Mémoire
MASTER ACADEMIQUE
Domaine : Sciences et Techniques
Filière : Génie Mécanique
Spécialité : Génie Productique
Présenté par : Charrouf Adel
Kaddouri Abderazzak

Thème
Etude de la Température de Coupe Pendant le Tournage de l'Acier Z200C12 en Utilisant la Logique Floue

Soutenu le : 01/06/2017
Devant le jury :
AMEUR Toufik MCB Université Kasdi Merbah Président
BELLOUFI Abderrahim MCA Université Kasdi Merbah Encadreur
ABDELKRIM Mourad MCB Université Kasdi Merbah Examinateur

Année Universitaires : 2016/2017
Dédicace

Nous tien à dédier ce modeste travail à :

À nos parents.
À nos frères,
À nos sœurs,
À nos familles,
À tous nos amis et nos collègues.
Remerciement

Tout d’abord, nous remercions le dieu nos créateur.

Nous tenons à exprimer toute notre gratitude et reconnaissance à notre encadreur Dr. Abderrahim Belloufi qui d’avoir accepté de diriger ce travail et, d’avoir mis à nos disposition tous les moyens qui permis de mener à terme cette étude et aussi pour ses précieux conseils et ses encouragements.

Nous tiens aussi à remercier Dr. AMEUR Toufik pour l’intérêt à bien voulu porter à ce travail ainsi que pour l’honneur qu’il n’a fait en présidant le jury.

Nos remerciements vont également Dr. ABDELKRJM Mourad pour intéressé à ce travail et d’avoir bien voulu n’honorer de leur présence dans ce jury.

Mes remerciements s’adressent également à tous ce qui nous avons aidé faire aboutir ce travail.

Enfin, à tous les étudiants de notre promotion et nous souhaitons le bon courage à tous les étudiants pour finir ces études, et à tous les enseignants de l’université KASDI MERBAH De l’OUARGLA.
Table des Matières

<table>
<thead>
<tr>
<th>Chapitre I</th>
<th>Etude bibliographique</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>I.2</td>
<td>Le tournage dur</td>
</tr>
<tr>
<td>I.2.1</td>
<td>Définition</td>
</tr>
<tr>
<td>I.3</td>
<td>Les conditions de coupe</td>
</tr>
<tr>
<td>I.3.1</td>
<td>Vitesse de coupe V_C</td>
</tr>
<tr>
<td>I.3.2</td>
<td>La vitesse d’avance V_f et avance par tour f</td>
</tr>
<tr>
<td>I.3.3</td>
<td>Profondeur de passe a</td>
</tr>
<tr>
<td>I.4</td>
<td>Phénomènes thermiques pendant la coupe</td>
</tr>
<tr>
<td>I.5</td>
<td>Les températures de coupe et ses effets</td>
</tr>
<tr>
<td>I.6</td>
<td>Méthodes de mesure de la température de coupe</td>
</tr>
<tr>
<td>I.6.1</td>
<td>Analytiquement</td>
</tr>
<tr>
<td>I.6.2</td>
<td>Méthodes expérimentales pour la détermination de la température de coupe</td>
</tr>
<tr>
<td>I.7</td>
<td>Revue de littérature</td>
</tr>
<tr>
<td>I.7.1</td>
<td>Travaux basés sur la détermination de la température de coupe avec des méthodes analytiques et numériques</td>
</tr>
<tr>
<td>I.7.2</td>
<td>Travaux basés sur la mesure de température de coupe avec les méthodes expérimentales</td>
</tr>
<tr>
<td>I.8</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre II</th>
<th>Théorie de la logique floue</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>II.2</td>
<td>La Logique floue</td>
</tr>
<tr>
<td>II.2.1</td>
<td>Le principe</td>
</tr>
<tr>
<td>Chapitre II</td>
<td>Titre</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>II.2.2</td>
<td>Utilisation de la logique floue</td>
</tr>
<tr>
<td>II.3</td>
<td>Logique floue et la logique classique</td>
</tr>
<tr>
<td>II.4</td>
<td>Les variables linguistiques</td>
</tr>
<tr>
<td>II.5</td>
<td>Fonction d’appartenance</td>
</tr>
<tr>
<td>II.5.1</td>
<td>La fonction triangulaire</td>
</tr>
<tr>
<td>II.5.2</td>
<td>La fonction trapézoïdale</td>
</tr>
<tr>
<td>II.5.3</td>
<td>La fonction Gaussienne</td>
</tr>
<tr>
<td>II.6</td>
<td>Les opérateurs en logique floue</td>
</tr>
<tr>
<td>II.6.1</td>
<td>L’opérateur ET (intersection)</td>
</tr>
<tr>
<td>II.6.2</td>
<td>L’opérateur OU (Union)</td>
</tr>
<tr>
<td>II.7</td>
<td>Structure d’un système de commande floue</td>
</tr>
<tr>
<td>II.7.1</td>
<td>Interface de Fuzzification</td>
</tr>
<tr>
<td>II.7.2</td>
<td>Mécanisme d’inférence floue</td>
</tr>
<tr>
<td>II.8</td>
<td>Défuzzification</td>
</tr>
<tr>
<td>II.8.1</td>
<td>Défuzzification par centre de gravité</td>
</tr>
<tr>
<td>II.8.2</td>
<td>Défuzzification par valeur maximum</td>
</tr>
<tr>
<td>II.9</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre III</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.1</td>
<td>Introduction</td>
<td>23</td>
</tr>
<tr>
<td>III.2</td>
<td>Procédure et données expérimentale</td>
<td>23</td>
</tr>
<tr>
<td>III.3</td>
<td>Système floue</td>
<td>25</td>
</tr>
<tr>
<td>III.4</td>
<td>Modélisation floue</td>
<td>25</td>
</tr>
<tr>
<td>III.4.1</td>
<td>Les variables floues</td>
<td>25</td>
</tr>
<tr>
<td>III.4.2</td>
<td>Les sous-ensembles flous</td>
<td>26</td>
</tr>
<tr>
<td>III.4.3</td>
<td>Les fonctions d’appartenance</td>
<td>30</td>
</tr>
<tr>
<td>III.5</td>
<td>Les règles floues</td>
<td>34</td>
</tr>
<tr>
<td>III.6</td>
<td>Défuzzification</td>
<td>36</td>
</tr>
</tbody>
</table>
III.7 Résultats et discussion ... 36

III.7.1 Etude de la précision et de l'erreur du système flou 36

III.7.2 Représentation schématique des résultats .. 42

III.7.3 Validation des résultats ... 44

III.7.4 Comparaison de la température de coupe pour les deux types de plaquettes revêtue et non revêtue (modèle floue) .. 46

III.8 Conclusion ... 47

Conclusion générale ... 48

Bibliographique .. 49
Liste des Figures

Chapitre I
Etude bibliographique

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1</td>
<td>Procédé de tournage.</td>
<td>4</td>
</tr>
<tr>
<td>I.2</td>
<td>Vitesse de coupe en tournage.</td>
<td>6</td>
</tr>
<tr>
<td>I.3</td>
<td>L’avance f dans les cas de tournage.</td>
<td>6</td>
</tr>
<tr>
<td>I.4</td>
<td>Profondeur de passe.</td>
<td>7</td>
</tr>
<tr>
<td>I.5</td>
<td>Carte thermique d’un outil pour différentes vitesse de coupe.</td>
<td>8</td>
</tr>
<tr>
<td>I.6</td>
<td>Mesure de la température par thermocouples.</td>
<td>10</td>
</tr>
<tr>
<td>I.7</td>
<td>Pyromètre à infrarouge</td>
<td>11</td>
</tr>
<tr>
<td>I.8</td>
<td>Les valeurs de la température de l’outil pour certains endroits.</td>
<td>11</td>
</tr>
<tr>
<td>I.9</td>
<td>Chronogramme des travaux liés la temperature de coupe.</td>
<td>13</td>
</tr>
</tbody>
</table>

Chapitre II
Théories de la logique floue

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.1</td>
<td>Classification des températures d’une pièce en deux ensembles.</td>
<td>16</td>
</tr>
<tr>
<td>II.2</td>
<td>Variable linguistique</td>
<td>17</td>
</tr>
<tr>
<td>II.3</td>
<td>Fonction triangulaire</td>
<td>18</td>
</tr>
<tr>
<td>II.4</td>
<td>Fonction trapézoïdale</td>
<td>18</td>
</tr>
<tr>
<td>II.5</td>
<td>Fonction Gaussienne</td>
<td>18</td>
</tr>
<tr>
<td>II.6</td>
<td>Exemple pour l’opérateur ET (intersection).</td>
<td>19</td>
</tr>
<tr>
<td>II.7</td>
<td>Exemple pour l’opérateur OU (Union).</td>
<td>19</td>
</tr>
<tr>
<td>II.8</td>
<td>Structure interne d’un régulateur de la logique floue.</td>
<td>20</td>
</tr>
</tbody>
</table>

Chapitre III
Résultats et discussions

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.1</td>
<td>Entrées et sorties du système flou.</td>
<td>25</td>
</tr>
<tr>
<td>III.2</td>
<td>Variable linguistiques pour la profondeur de passe.</td>
<td>26</td>
</tr>
<tr>
<td>III.3</td>
<td>Variable linguistiques pour la vitesse de rotation.</td>
<td>26</td>
</tr>
<tr>
<td>III.4</td>
<td>Variable linguistiques pour l’avance par tour.</td>
<td>27</td>
</tr>
<tr>
<td>Figure III.5</td>
<td>Les valeurs de la température de coupe pour l’ensemble des essais (plaquette non revêtue)</td>
<td>27</td>
</tr>
<tr>
<td>Figure III.6</td>
<td>Variable linguistiques pour la température</td>
<td>28</td>
</tr>
<tr>
<td>Figure III.7</td>
<td>Variable linguistiques pour la profondeur de passe</td>
<td>28</td>
</tr>
<tr>
<td>Figure III.8</td>
<td>Variable linguistiques pour la vitesse de rotation</td>
<td>28</td>
</tr>
<tr>
<td>Figure III.9</td>
<td>Variable linguistiques pour l’avance par tour</td>
<td>29</td>
</tr>
<tr>
<td>Figure III.10</td>
<td>Les valeurs de la température de coupe pour l’ensemble des essais (plaquette revêtue)</td>
<td>29</td>
</tr>
<tr>
<td>Figure III.11</td>
<td>Variable linguistiques pour la température</td>
<td>30</td>
</tr>
<tr>
<td>Figure III.12</td>
<td>Fonction d’appartenance de profondeur de passe</td>
<td>31</td>
</tr>
<tr>
<td>Figure III.13</td>
<td>Fonction d’appartenance de vitesse de rotation</td>
<td>31</td>
</tr>
<tr>
<td>Figure III.14</td>
<td>fonctions d’appartenance de l’avance par tour</td>
<td>32</td>
</tr>
<tr>
<td>Figure III.15</td>
<td>Fonctions d’appartenance de la température de coupe</td>
<td>32</td>
</tr>
<tr>
<td>Figure III.16</td>
<td>Fonction d’appartenance de profondeur de passe</td>
<td>32</td>
</tr>
<tr>
<td>Figure III.17</td>
<td>Fonctions d’appartenance de vitesse de rotation</td>
<td>33</td>
</tr>
<tr>
<td>Figure III.18</td>
<td>Fonctions d’appartenance de l’avance par tour</td>
<td>33</td>
</tr>
<tr>
<td>Figure III.19</td>
<td>Fonctions d’appartenance de la température de coupe</td>
<td>33</td>
</tr>
<tr>
<td>Figure III.20</td>
<td>Défuzzification sous Matlab</td>
<td>36</td>
</tr>
<tr>
<td>Figure III.21</td>
<td>Variation de la température prévue par la logique floue en fonction des paramètres de coupe (plaquette non revêtue)</td>
<td>43</td>
</tr>
<tr>
<td>Figure III.22</td>
<td>Variation de la température prévue par la logique floue en fonction des paramètres de coupe (plaquette revêtue)</td>
<td>43</td>
</tr>
<tr>
<td>Figure III.23</td>
<td>variation des températures (expérimentale, simulation) en fonction du nombre d’essai (usinage avec plaquette non revêtue)</td>
<td>44</td>
</tr>
<tr>
<td>Figure III.24</td>
<td>variation des températures (expérimentale, simulation) en fonction du nombre d’essai (usinage avec plaquette revêtue)</td>
<td>45</td>
</tr>
<tr>
<td>Figure III.25</td>
<td>Comparaison de la température de coupe pour les deux types de plaquette revêtue et non revêtue</td>
<td>46</td>
</tr>
</tbody>
</table>
Liste des Tableaux

Tableau III.1	Données expérimentales pour la plaquette non revêtue	23
Tableau III.2	Données expérimentales pour la plaquette revêtue	24
Tableau III.3	Valeurs limites pour les entrées et les sorties (plaquettes revêtue)	25
Tableau III.4	Valeurs limites pour les entrées et les sorties (plaquettes non revêtue)	26
Tableau III.5	Les règles floues (usinage avec plaquette non revêtue)	34
Tableau III.6	Les règles floues (usinage avec plaquette revêtue)	35
Tableau III.7	Les résultats du système flou (Usinage par plaquette non revêtue)	37
Tableau III.8	Les résultats du système flou (Usinage par plaquette revêtue)	39
Nomenclature

<table>
<thead>
<tr>
<th>Symbole</th>
<th>Unité</th>
<th>Désignation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>mm</td>
<td>Profondeur de passe</td>
</tr>
<tr>
<td>D</td>
<td>mm</td>
<td>Diamètre</td>
</tr>
<tr>
<td>f</td>
<td>mm/ tr</td>
<td>Avance par tour</td>
</tr>
<tr>
<td>HRC</td>
<td></td>
<td>Dureté de Rockwell</td>
</tr>
<tr>
<td>HV</td>
<td>N/mm^2</td>
<td>Dureté de Vickers</td>
</tr>
<tr>
<td>L</td>
<td>mm</td>
<td>La Longueur</td>
</tr>
<tr>
<td>N</td>
<td>tr/ min</td>
<td>Vitesse de rotation</td>
</tr>
<tr>
<td>T</td>
<td>$^\circ C$</td>
<td>La température de coupe</td>
</tr>
<tr>
<td>Vc</td>
<td>m/min</td>
<td>La vitesse de coupe</td>
</tr>
<tr>
<td>σ</td>
<td>rad/s</td>
<td>La vitesse angulaire</td>
</tr>
<tr>
<td>Vf</td>
<td>mm/min</td>
<td>La vitesse d’avance</td>
</tr>
<tr>
<td>C ou C_v</td>
<td>$J/kg.K$</td>
<td>Chaleur spécifique</td>
</tr>
<tr>
<td>A</td>
<td>Mp</td>
<td>Limite élastique de JC</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Consistance de JC</td>
</tr>
<tr>
<td>θ</td>
<td>$^\circ C$</td>
<td>Température</td>
</tr>
<tr>
<td>Q</td>
<td>J</td>
<td>Chaleur</td>
</tr>
<tr>
<td>Ec</td>
<td>J</td>
<td>Énergie de coupe spécifique</td>
</tr>
<tr>
<td>C_v</td>
<td></td>
<td>chaleur spécifique volumique</td>
</tr>
<tr>
<td>β</td>
<td>$W/m.K$</td>
<td>conductivité thermique</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>Constant</td>
</tr>
<tr>
<td>e_i</td>
<td>$%$</td>
<td>pourcentage d’erreur</td>
</tr>
<tr>
<td>T_{exp}</td>
<td>$^\circ C$</td>
<td>Température expérimentale</td>
</tr>
<tr>
<td>T_{sim}</td>
<td>$^\circ C$</td>
<td>Température simulation</td>
</tr>
<tr>
<td>EXP et SUM</td>
<td></td>
<td>Expérimentale et Simulation</td>
</tr>
</tbody>
</table>
Introduction Générale
Introduction Générale

La mise en forme des pièces mécaniques par enlèvement de matière est encore aujourd’hui une technique très répandue. Les procédés de forgeage et de fonderie n’ont pas encore la capacité de produire les composants de nombreuses applications mécaniques où les spécifications géométriques et les intégrités de surfaces font l’objet des plus grandes attentions. De plus, l’évolution des machines-outils et des outils de a maintenir la coupe des métaux à un niveau compétitif de productivité [1].

Les techniques d’usinage sont donc en constante évolution, afin de maintenir leurs performances au plus haut niveau et d’être capables de répondre aux nouvelles exigences industrielles, en termes de qualité et de productivité. Le tournage dur est un procédé que l’on peut qualifier de standard dans un certain nombre de secteurs comme la production de roulements et plusieurs pièces mécaniques importantes.

La température de coupe est l’un des aspects les plus pertinents des opérations d’usinage, car elle influe sur la durée de vie de l’outil de coupe. L’avancé, la vitesse de coupe, la profondeur de passe et le matériau de la pièce sont des facteurs les plus importants qui affectent. [2].

L’amélioration de l’efficacité du processus d’usinage peut être obtenue par l’optimisation des paramètres de processus. Il est nécessaire d’entamer le problème d’optimisation des paramètres de coupe avec les deux étapes suivantes: la modélisation des entrées-sorties et des relations ces paramètres, et la détermination de conditions de coupe optimums.

La modélisation des paramètres de processus d’usinage est généralement une tâche difficile. Les techniques de modélisation des entrées et des sorties et les relations entre les paramètres sont principalement basées sur la régression statistique, la théorie des ensembles flous et les réseaux neuronaux artificiels. Ce mémoire à pour but d’utiliser une approche basée sur la logique floue en vue d’établir un modèle pour prédire la température de coupe en tournage dur sans application de lubrification.

En vue d’atteindre cet objectif, le travail présenté dans ce mémoire s’articule de la façon suivante :

La première partie porte une étude bibliographique permet dans un premier temps de définir le procédé de tournage dur, les conditions de coupe pour ce procédés ensuite les aspects thermiques liés a ce procédés.
Le deuxième chapitre va mettre l’accent sur la théorie de la logique floue.

Les résultats de simulation et les discussions sont regroupés dans le troisième chapitre.

En fin, une conclusion générale sur l'ensemble de ce travail, parachève cette étude.
Chapitre I

Étude Bibliographique
I.1 Introduction

L’usinage est un procédé de génération de surfaces. Il consiste à créer une nouvelle surface par enlèvement de matière en utilisant un outil coupant. Les caractéristiques de cette surface dépendent du couple outil-matière, c'est-à-dire des paramètres mis en jeu pendant la coupe (vitesse de coupe, vitesse d’avance, profondeur de passe …) [2].

En tournage, le mouvement de coupe est obtenu par rotation de la pièce, tandis que le mouvement d'avance est obtenu par déplacement de l'outil coupant. La combinaison de ces deux mouvements permet l'enlèvement de matière sous forme des copeaux [3].

Dans ce chapitre, nous recueillons des généralités sur le procédé du tournage dur, ces généralités contient des définitions et des informations sur : les conditions de coupe, la température de coupe et ses effets et les Phénomènes thermiques pendant la coupe.

Nous terminerons ce chapitre par une synthèse bibliographique sur quelques travaux de mesure de la température de coupe.

I.2 Le tournage dur

Le tournage des métaux durs est un procédé assez récent dans son utilisation. Le but de celui-ci est, à terme de supprimer lors de l’usinage de pièces de précision, la phase de rectification, souvent longue et coûteuse [4].

Aussi, le tournage des métaux durs est important et intéresse de nombreux industriels, de part des gains de productivité qu’il doit permettre de réaliser sur l’usinage des pièces. En effet, avec les méthodes d’usinage conventionnel, là où une grande dureté fonctionnelle des pièces est demandée (50 à 65 HRC), consiste à faire les différentes phases successives suivantes [4] :

![Figure I.1 Procédé de tournage](image-url)
I.2.1 Définition

Le tournage dur concerne le tournage de matériaux ferreux durcis entre 45 et 70 HRC par des opérations principalement de finition interne ou externe, et dans certain cas d’ébauche. Les matériaux durs sont caractérisés par les propriétés suivantes [2]:
- Une grande dureté.
- Un pouvoir abrasif élevé.
- Une faible ductilité.
- Un grand rapport entre la dureté et le module d’élasticité (module de Young).

Le mot dur signifie :
- dur au sens de la dureté du matériau usiné, du point de vue résistance à la pénétration.
- dur au sens de difficulté à usiner le matériau, conséquence de sa très mauvaise usinabilité (un matériau peut être difficile à usiner sans pour autant être dur).
- dur au sens de la difficulté de l'opération d'usinage (alésage profond, travail aux chocs,...) [2].

I.3 Les conditions de coupe

I.3.1 Vitesse de coupe \(V_c \)

La pièce est entraînée sur le tour à une certaine vitesse \(\omega \) rad / s (soit \(N \) tr/min), cette vitesse angulaire étant communiquée par la broche de la machine via le porte pièce (Figure I.2). Compte tenu du diamètre de la pièce au point d'usinage situé sur un diamètre \(D \), la vitesse relative de la pièce en ce point par rapport à l'outil (supposé fixe par rapport à la machine) vaut :

\[
V_c = \left(\frac{D}{2} \right) \omega \ [m / \text{min}]
\]

Cette vitesse est appelée vitesse de coupe, soit avec les unités traditionnelles de la Fabrication mécanique :

\[
N = \frac{1000V_c}{\pi D} \ [\text{tr} / \text{min}]
\]

Il convient que la vitesse de coupe n’est constante que si la vitesse de broche et le diamètre de la pièce demeurent inchangés [6].
Chapitre I

Etude Bibliographique

I.3.2 La vitesse d’avance V_f et avance par tour f

La vitesse d’avance V_f, est une vitesse instantanée du mouvement d’avance du point considéré de l’arête de coupe par rapport à la pièce. Elle est exprimée soit en $[mm/min]$ soit en $[mm/tour]$ [8].

L’avance par tour $f (mm/tr)$ est la valeur du déplacement de l’outil, lorsque la pièce a effectué une révolution. C’est une donnée clé pour la qualité de la surface usinée [6].

Dans le cas de tournage la vitesse d’avance V_f $[mm/min]$ est donnée par la formule suivante:

$$V_f = F_z \times N [mm/min]$$ (I-3)

I.3.3 Profondeur de passe a

La profondeur de passe, figure (I-4) notée a en $[mm]$ correspond à la longueur de l’arête de coupe engagée dans la matière, dans le cas de la coupe orthogonale et à la différence entre le rayon de la pièce avant et après usinage, dans le cas du tournage. La profondeur de coupe est toujours mesurée perpendiculairement à la direction de l’avance et non pas suivant l’arête de l’outil [7].
Chapitre I

Etude Bibliographique

Perçage : $a = D/2$

Chariotage $a = (d_1 - d_2)/2$

Fraisage $a = H - h$

Alésage $a = (d_1 - d_2)/2$

Dressage $a = L - l$

Rabotage $a = H - h$

Figure I.4 Profondeur de passe pour procédés d’usinage [7].

I.4 Phénomènes thermiques pendant la coupe

L’usinage génère de la chaleur par auto-échauffement du matériau de la pièce et par frottement à l’interface (outil/pièce) [8].

L’énergie calorifique s’évacue dans les copeaux et dans la pièce et l’outil avec des proportions non négligeables. Ainsi, le matériau subit un traitement thermique local (trempe superficielle) qui modifie les caractéristiques de la pièce finie.

La température du « point chaud » situé à la pointe de l’outil facilite la coupe des matériaux ductiles, car ceux-ci ont tendance à se ramollir localement. La figure (I.5) représente les résultats d’une simulation thermique de la coupe pour différentes vitesses de coupe, on observe bien une augmentation de la température du point chaud avec la vitesse de coupe [8].
I.5 **Les températures de coupe et ses effets**

L’effet de la température de coupe, particulièrement quand elle est élevée, est nuisible pour l’outil de coupe et pour la pièce.

Les effets néfastes sur l’outil de coupe sont [2] :
- L’usure, qui réduit la durée de vie de l’outil de coupe.
- La déformation plastique des arêtes de coupe si le matériau de l’outil n’est pas assez dur.
- Endommagement des arêtes de coupe dus aux chocs thermiques.
- Formation de l’arête rapportée.

Les effets néfastes de la température sur la pièce [2] :
- Le manque de précision des dimensions de la pièce à cause de la distorsion.
- Expansion et contraction durant et après l’usinage.
- Induction des contraintes résiduelles sur la surface.
I.6 Méthodes de mesure de la température de coupe

La température de coupe peut être déterminée analytiquement :

I.6.1 Analytiquement

La méthode analytique est basée sur des modèles mathématiques (équations). Cette méthode est simple rapide et moins coûteuse mais n’est pas précise. Cette méthode est précise mais coûteuse [7].

a. Estimation analytique et numérique de la température de coupe dans la zone de cisaillement \(\theta_s \)

L’énergie de coupe par unité du temps, \(P_Z V_c \) est utilisée pour causer le cisaillement primaire et le frottement sur la face d’attaque comme [7] :

\[
V_c P_Z = P_S V_s + F V_f
\]
(I-5)

\[
P_S V_s = P_Z V_c - F \cdot V_f
\]
(I-6)

\[
\frac{A q_1 (P_Z V_c - F V_f)}{J} = c \cdot a \cdot b \cdot V_c (\theta_s - \theta a)
\]
(I-7)

Où: \(A \) : fraction de l’énergie de cisaillement converti en chaleur, \(q_1 \) : fraction de la chaleur allant vers le copeau de la zone de cisaillement \(J \) : chaleur mécanique équivalente du copeau/matériau usiné, \(C_v \) : chaleur spécifique volumique du copeau, \(\theta_a \) :

Température ambiante, \(a_1 \), \(b_1 \) : sections transversales du copeau non déformé [7].

Ainsi:

\[
a_1 b_1 = t S_0
\]
(I-8)

\[
\theta_s = \frac{A q_1 (P_Z V_c - F V_f)}{J t S_0 V_c} + \theta a
\]
(I-9)

\[
\theta_s = \frac{A q_1 (P_Z - F / \bar{e})}{J t S_0 V_c}
\]
(I-10)

Généralement \(A \) varié de 0.95 à 1 et \(q \) de 0.7 à 0.9 en tournage.
b. Température moyenne à l’interface outil/copeau θ_i

Utilisant deux paramètres adimensionnels, Q_1 et Q_2 Buckingham [7] à montrer que la relation entre ces deux paramètres est donnée par :

\[
Q_1 = C_1 Q_2^n
\] (I-11)

\[
Q_1 = \frac{C_v \theta_i}{E_c}
\] (I-12)

\[
Q_2 = \left(\frac{V_c C_v a_i}{\lambda}\right)^{0.5}
\] (I-13)

E_c: Énergie de coupe spécifique C_v: chaleur spécifique volumique β: conductivité thermique, constante n: index: 0.25, ainsi:

\[
\theta_i = C_i E_c \sqrt{V_c a_i / \lambda C_v}
\] (I-14)

I.6.2 Méthodes expérimentales pour la détermination de la température de coupe

a. Mesure de la température par thermocouples

La mesure de la température par un thermocouple est basée sur le principe suivant : si deux métaux sont soudés à leurs extrémités et si une de ces soudures est portée à une température bien déterminée, l’autre étant maintenue à une température différente, on observera alors une force électromotrice entre les deux jonctions. L’évaluation de cette force, qui dépend des matériaux utilisés, symbolise la température mesurée. L’avantage des thermocouples est la simplicité et la flexibilité de réalisation et d’utilisation pour de simple acquisition et ce à moindre coût. Il existe plusieurs types de thermocouples, les plus répandus sont les thermocouples standards et dynamiques [2].

Figure I.6 Mesure de la température par thermocouples [2].
b. Mesure de la température par la méthode optique

La méthode d’implantation des thermocouples reste une technique onéreuse et ne permet pas d’effectuer des mesures de la température de contact outil-copeau. De plus, les difficultés liées à la connaissance pour reproduire les conditions de coupe afin de nourrir les modèles basés sur la méthode inverse et les erreurs de mesures liées à l’usure de l’outil. Il est donc nécessaire d’utiliser d’autres systèmes de mesure de température directes qui permettent une acquisition locale et au cours du temps au niveau de la zone de coupe (outil/pièce/copeau) [2].

Les seules méthodes permettant de faire des relevés de températures de la zone de coupe sur lesquelles l’évolution du contact pièce outil copeau n’influe pas, sont celles basées sur l’émission d'onde électromagnétique d'un corps lorsqu'il est chauffé. Les techniques les plus répandues sont le pyromètre optique, la caméra infrarouge et la caméra proche infrarouge [2].

Le pyromètre est une technique basée sur l’émission d'onde électromagnétique. Le principe consiste à comparer deux énergies (dans la même bande de longueur d’onde), celle émise par le corps chaufé à celle émise par une source établon. L’étalonnage d’un pyromètre se fait à l’aide d’un corps noir [2].

![Figure I.7 Pyromètre à infrarouge](image)

Figure I.7: Pyromètre à infrarouge [2].

![Figure I.8 Les valeurs de la température de L’outil pour certains endroits](image)

Figure I.8: Les valeurs de la température de L’outil pour certains endroits [2].

I.7 Revue de littérature

I.7.1 Travaux basés sur la détermination de la température de coupe avec des méthodes analytiques et numériques

- En 1945, Merchant et al [9], ont intéressé au procède de coupe orthogonal stationnaire avec un copeau non segmente. Leur approche purement mécanique est basée sur l’équilibre des efforts appliques au copeau.
En 1951, Lee et al [9], ont utilisé la méthode des lignes de glissement pour décrire l’écoulement du copeau à travers la bande de cisaillement, puis le long de la face de coupe. Ces auteurs suppriment ainsi l’hypothèse d’un outil suppose parfait, et intègrent le rayon d’arête. Néanmoins, la méthode des lignes de glissement impose que le matériau usine soit parfaitement plastique.

En 1969 à 1989, Oxley [9], propose en s’appuyant sur les travaux de Boothroyd (1963), un modèle thermomécanique. Il est le premier auteur a proposer une modélisation complète du procédé de coupe orthogonale. Oxley utilise un comportement thermo-viscoplastique pour le matériau usine et prend en compte à la fois les zones de cisaillement primaire et secondaire en supposant un contact collant a l’interface outil-copeau.

En 2006, S.R. Carvalho et al. [10], ont mesuré la température à l'interface de la pièce-outil ce travail propose l'estimation de la température et le flux de chaleur à l'interface outil-Pièce en utilisant une technique basée la résolution inverse du problème de conduction. Le modèle thermique est obtenu par une solution numérique du transitoire en trois dimensions qui considère à la fois l'outil et l'ensemble porte-outil.

I.7.2 Travaux basés sur la mesure de température de coupe avec les méthodes expérimentales

Plusieurs études ont été élaborées sur ces méthodes :

- En 1948, Trigger et al [2], ont utilisé les thermocouples dynamiques pour estimer la température à l’interface outil-copeau pendant l’usinage. L’outil est utilisé comme un élément du thermocouple et la pièce comme étant le deuxième élément. A l’interface entre ces deux éléments, il y a formation d’une jonction qui par la suite jouera le rôle d’un thermocouple.

- En 2007 Ihsan Korkut et al [11], Dans cette étude, les auteurs ont mesuré de la température développée pendant la coupe en utilisant un thermocouple intégré dans l'outil de coupe.ils ont utilisé l'acier AISI 1117 comme matériau de la pièce à usiner et un thermocouple de type K pour la mesure de la température. L'outil de coupe utilisé était non revêtu et sans dispositif de braquage de copeaux et sous la forme de SCMW 12 M508-S2F selon ISO00 1832.

- Afin de localiser le thermocouple sur l'outil de coupe, un Flir Systems Therma Cam Caméra thermique a été utilisé. Les résultats ont montré que l'augmentation de la vitesse de coupe, de la vitesse d'avance et de la profondeur de passe entraînait une
augmentation de la température à la surface arrière du râteau. Ce pendant, la vitesse de coupe a eu la plus grande influence sur la température.

- En 2013, Dirk Bidermann et al [12], ont monté que les charges à haute température dans les processus de coupe peuvent causer des revêtements et des dommages élevés dans la zone sous- pièce à usiner. En particulier, l'interaction entre les différents paramètres de coupe affecte les charges thermiques dans les zones de découpage. par conséquent, cet article traite un système de surveillance en cours de processus pour les températures résultante dans un procèdes de tournage. Contrairement aux recherches effectuées jusqu'ici, cette recherche porte sur un nouvel outil capteur pour la mesure de la température. Ce système de capteurs est réalisé par un revêtement Nickel-Chrome sur la face de coupe de la plaquette, ils ont utilisé trois thermocouples dans les points de jonction, les résultats sont discutés en comparaison avec le système d'imagerie thermique et les thermocouples classiques.

La figure I.9 représente chronogramme des différents travaux liés à la température de coupe.

```
Figure I.9 Chronogramme des travaux liés à la température de coupe.
```

1.8 Conclusion

Nous avons présenté dans ce premier chapitre dans une première partie, les notions indispensables de la mise en forme par enlèvement de matière en particulier le procédés de tournage. La majorité des parties présentées concernent principalement le tournage dur.
Dans la deuxième partie de ce chapitre nous avons présenté les procédures de mesure de la température de coupe pendant l’usinage ainsi qu’une revue de littérature.
Chapitre II

Théorie de la Logique Floue
II.1 Introduction

La logique floue, dans la plupart des applications actuelles, permet de prendre en compte toutes sortes de connaissances qualitatives de concepteurs et d’opérateurs dans l’automatisation des systèmes. De nos jours, la logique floue est un axe de recherche important sur lequel se focalisent des nombreuses recherches scientifiques, tant dans le domaine grand public (appareils photos, machines à laver,…) que dans le domaine industriel (réglage et commande de processus complexes liés à l’énergie, aux transports, à la transformation de la matière, à la robotique, aux machines-outils) [25]. Ce chapitre a pour but de se familiariser avec la logique floue et ces étapes en donnant des exemples simples.

II.2 La Logique floue

La description d'une certaine situation imprécise ou incertaine peut contenir des expressions floues comme par exemple: très grand, grand, moyen, petit. Ces expressions forment les valeurs d'une variable x, appelée "linguistique", soumise à des fonctions appelées fonctions d’appartenance [25].

La logique floue est une extension de la logique booléenne créée par Lotfi Zadeh en 1965 en se basant sur sa théorie mathématique des ensembles flous, qui est une généralisation de la théorie des ensembles classiques. En introduisant la notion de degré dans la vérification d'une condition, permettant ainsi à une condition d'être dans un autre état que vrai ou faux, la logique floue confère une flexibilité très appréciable aux raisonnements qui l'utilisent, ce qui rend possible la prise en compte des imprécisions et des incertitudes [26].

II.2.1 Le principe

Le principe du réglage par logique floue s'approche de la démarche humaine dans le sens que les variables traitées ne sont pas des variables logiques (au sens de la logique binaire par exemple) mais des variables linguistiques, proches du langage humain de tous les jours. De plus ces variables linguistiques sont traitées à l'aide de règles qui font références à une certaine connaissance du comportement du système [26].

Toute une série de notions fondamentales sont développées dans la logique floue. Ces notions permettent de justifier et de démontrer certains principes de base. Dans ce qui suit, on ne retiendra que les éléments indispensables à la compréhension du principe du réglage par logique floue [26].
II.2.2 Utilisation de la logique floue

La logique floue est une technique de résolution de problèmes très puissants avec une large applicabilité dans le contrôle et la prise de décision. Elle est très utile lorsque le modèle mathématique du problème à traiter n’existe pas ou existe mais difficile à implémenter, ou il est trop complexe pour être évaluer assez rapidement pour des opérations en temps réel. Ou bien lorsque des experts humains sont disponibles pour fournir des descriptions subjectives du comportement du système avec des termes en langage naturel. La logique floue est aussi supposée de travailler dans les situations où il y a de large incertitude et des variations inconnues dans les paramètres et la structure du système [27].

II.3 Logique floue et la logique classique

Dans le cadre de la logique classique, une proposition est soit vraie, soit fausse (1 ou 0). Par exemple, la logique classique peut facilement partitionner la température d’une pièce en deux sous-ensembles, «moins de 15 degrés» et «15 degrés ou plus». La figure (II.1) a montré le résultat de cette partition. Toutes les températures de moins de 15 degrés sont alors considérées comme appartenant à l’ensemble «moins de 15 degrés». On leur affecte une valeur de 1. Toutes les températures atteignant 15 degrés ou plus ne sont pas considérées comme appartenant à l’ensemble «moins de 15 degrés». On leur attribue une valeur de 0. Cependant, le raisonnement humain s’appuie fréquemment sur des connaissances ou des données inexactes, incertaines ou imprécises. Une personne placée dans une pièce dont la température est soit de 14.95 degrés soit de 15.05 degrés, ne fera certainement pas de distinction entre ces deux valeurs. Cette personne sera pourtant capable de dire si la pièce est «froide» ou «chaude», sans pour cela utiliser de température limite ni de mesure précise [28].

Figure II.1 Classification des températures d’une pièce en deux ensembles [28].
La logique floue permet de définir des sous-ensembles, comme «froid» ou «chaud», en introduisant la possibilité pour une valeur d’appartenir plus ou moins à chacun de ces sous-ensembles [28].

II.4 Les variables linguistiques

La notion de variable linguistique permet de modéliser les connaissances imprécises ou vagues sur une variable dont la valeur précise est inconnue. Une variable linguistique, ou variable floue, est donc une variable dont les valeurs floues appartiennent à des ensembles flous pouvant représenter des mots du langage naturel. Ainsi une variable floue peut prendre simultanément plusieurs valeurs linguistiques. Le domaine sur lequel ces termes et ces variables sont définies, constitue l’univers de discours. Le découpage de cet univers de discours par les termes flous est appelé une partition floue. Lorsque l’univers de discours est totalement recouvert par les termes flous, et que pour toutes valeurs, la somme des degrés d’appartenance est égale à 1, on parle alors de partition floue forte [29].

![Figure II.2 Variables linguistiques](image)

La variable linguistique peut être représentée par un triplé $(x,T(x),U)$ dans lequel x est le nom de la variable linguistique, $T(x)$ l’ensemble des valeurs linguistiques de x et U l’univers de discours [29].

II.5 Fonction d’appartenance

II.5.1 La fonction triangulaire

Elle est caractérisée par trois paramètres (a,b,c); les sommets du triangle [29]:

$$
\mu(x) = \max \left(\min \left(\frac{x-a}{b-a}, \frac{c-x}{c-b} \right), 0 \right)
$$

(II.1)
II.5.2 La fonction trapézoïdale

Définie par quatre paramètres (a, b, c, d) [29] :

\[\mu(x) = \max \left(\min \left(\frac{x-a}{b-a}, 1, \frac{d-x}{d-c}, 0 \right) \right) \]

(II.2)

II.5.3 La fonction Gaussienne

Définie par \(c \) et \(\sigma \) le centre, et l’épaisseur [29] :

\[\mu(x) = \exp \left(-\frac{(x-c)^2}{\sigma^2} \right) \]

(II.3)

\(\sigma \) : L’écart type
II.6 Les opérateurs en logique floue

Il s’agit de généralisation des opérateurs de : intersection et union de la théorie de ensembles classique [30].

II.6.1 L’opérateur ET (intersection)

Il est défini mathématiquement par [30]:

\[A \cap B = \{X / X \in A \land X \in B\} \]

(II.4)

Et il est représenté par la fonction

\[\mu_{A \cap B}(x) = \mu_{A}(x) \cap \mu_{B}(x) = \min(\mu_{A}(x), \mu_{B}(x)) \]

(II.5)

Figure II.6 Exemple pour l’opérateur ET (intersection) [31].

II.6.2 L’opérateur OU (Union)

Il est défini mathématiquement par [30]:

\[A \cup B = \{x / x \in A \lor x \in B\} \]

(II.6)

Et il est représenté par la fonction

\[\mu_{A \cup B}(x) = \mu_{A}(x) \lor \mu_{B}(x) = \max(\mu_{A}(x), \mu_{B}(x)) \]

(II.7)

Figure II.7 Exemple pour l’opérateur OU (Union) [31].
II.7 Structure d’un système de commande floue

Contrairement aux techniques de réglage classique, le réglage par la logique floue n’utilise pas des formules ou des relations mathématiques bien déterminées ou précises. Mais, il manipule des inférences avec plusieurs règles floues à base des opérateurs flous (ET, OU, ALORS, . . .) appliquées à des variables linguistiques [26].

On peut distinguer trois parties principales constituant la structure d’un régulateur floue :

- une interface de Fuzzification,
- un mécanisme d'inférence,
- une interface de défuzzification,

La figure II.8 représente les étapes (la structure) de la logique floue

Figure II.8 Structure interne d’un Régulateur de la logique floue [26].

\[X_1, X_2 : \text{les valeurs d'entrées} \]
\[X_r : \text{valeur de sortie} \]

II.7.1 Interface de Fuzzification

C’est une opération qui consiste à transformer les données numériques d’un phénomène à des valeurs linguistiques sur un domaine normalisé qui facilite le calcul. A partir de ces domaines numériques appelés univers de discours et pour chaque grandeur d’entrée ou de sortie, on peut calculer les degrés d'appartenance aux sous-ensembles flous de la variable linguistique correspondant [26].

II.7.2 Mécanisme d'inférence floue

Cette étape consiste à relier les variables physiques d’entrée du régulateur (grandeurs mesurées ou estimées), qui sont transformées en variables linguistiques pendant l’étape de
Fuzzification, la variable de sortie du contrôleur sous sa forme linguistique, par des règles mentales traduisant une action ou une décision linguistique sur la commande à la sortie du régulateur, face à toute situation se présentant à l’entrée de ce régulateur [26].

Ces inférences sont basées sur plusieurs règles établies par l’expertise et le savoir-faire humain concernant le système à régler. Elles sont structurées sous forme compacte dans une matrice multidimensionnelle dite matrice d’inférence [26].

II.8 Défuzzification

Comme nous avons vu dans la section précédente, les méthodes d’inférence fournissent un résultat qui est une fonction d’appartenance. la sortie du contrôleur est en général une grandeur continue, prenant sa valeur dans un intervalle. La défuzzification est le traitement qui permet de définir une correspondance entre le résultat de l’inférence et la grandeur continue fournie en sortie [28].

II.8.1 Défuzzification par centre de gravité

La défuzzification par centre de gravité consiste à calculer l’abscisse du centre de gravité de la fonction d’appartenance selon [28] :

\[y_{cg} = \frac{\int y \mu_{B_{res}}(y) dy}{\int \mu_{B_{res}}(y) dy} \] (II.8)

En pratique, on estime le centre de gravité en calculant la moyenne d’un certain nombre de points échantillonnés sur la fonction [28] :

\[y_{cg} = \frac{\sum y_i \mu_{B_{res}}(y_i)}{\sum \mu_{B_{res}}(y_i)} \] (II.9)

Le temps nécessaire au traitement est directement proportionnel au nombre de points retenus pour le calcul de la moyenne. Selon les contraintes fixées par l’application, il y a un compromis à réaliser entre la précision souhaitée et le temps de calcul disponible [28].

II.8.2 Défuzzification par valeur maximum

Cette méthode ne s’utilise que dans le cas discret. On choisit comme sortie \(y_m \) l’abscisse de la valeur maximale de la fonction d’appartenance résultante \(\mu_{B_{res}}(y) \). Lorsque \(\mu_{B_{res}}(y) \) est écrêtée, on prend la moyenne des abscisses du maximum [28]:
M est l’ensemble des points pour lesquels la fonction d’appartenance est maximale :

\[M = \left\{ y \in [-c, c] / \mu_{B_{res}}(y) = H(B_{res}) \right\} \]

(II.11)

II.9 Conclusion

Ce chapitre est consacré à la présentation des concepts fondamentaux de la logique floue, cela se fait pour expliquer les détails des étapes, et les méthodes les plus répandus pour la réalisation d’un système basé sur la logique floue.
Chapitre III

Résultats et Discussions
III.1 Introduction

Dans ce chapitre nous utilisons la logique flou, pour prédire la température de coupe, pendant les opérations de tournage dur de l’acier Z200 C12 fonction des conditions de coupe (vitesse de rotation, la vitesse d’avance et profondeur de passe) en se basant sur une base de données élaborée par A. Dokma et S. Mezzar [2].

III.2 Procédure et données expérimentale

Les données ci-dessous (Tableau III.1 et Tableau III.2) représentent les résultats obtenues à partir de l’étude de A. Dokma et S. Mezzar [2]. Ce travail est réalisé dans le but de la détermination de la température de coupe de l’acier Z200 C12 dans les opérations de chariotage en fonction des paramètres de coupe (profondeur de passe, vitesse d’avance, vitesse de rotation) pour deux types de plaquettes : revêtue et non revêtue.

a. Données expérimentales pour la plaquette non revêtue

| Tableau III.1 Données expérimentales pour la plaquette non revêtue [2]. |
|---|---|---|---|---|
| a (mm) | 0.1 | 0.15 | 0.2 | 0.25 |
f (mm / tr)	N (tr / min)									
0.045										
440	38,19	44,56	45,94	48,5						
740	35,76	50,19	53,06	59,96						
900	55,02	52,63	44,91	59,28						
0.084										
440	63,67	56,45	60,94	58,31						
740	52,5	61,93	63,27	70,38						
900	39,95	57,36	60,54	60,7						
0.112										
440	46,95	52,41	52,19	58,47						
740	48,97	55,24	59,23	62,42						
900	56,9	55,49	57,95	58,09						
0.157										
440	46,8	55,66	60,05	59,54						
740	54,76	57,23	58,52	58,31						
900	48,26	77,7	57,99	74,11						
0.18										
440	63,57	63,97	62,43	76,74						
740	58,39	62,51	66,57	62,51						
900	61,7	67,48	63,49	69,05						
0.225										
440	52,38	55	58,58	59,95						
740	49,23	49,67	69,52	71,55						
Chapitre III

Résultats et Discussions

| 900 | 48,98 | 74,06 | 65,65 | 84,22 |

| b. Données expérimentales pour la plaquette revêtue |

Tableau III. Données expérimentales pour la plaquette revêtue [2].

<table>
<thead>
<tr>
<th>$a (mm)$</th>
<th>0.1</th>
<th>0.15</th>
<th>0.2</th>
<th>0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f (mm/\text{tr})$</td>
<td>$N(\text{tr/min})$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.045</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>41,82</td>
<td>69,97</td>
<td>105,46</td>
<td>70,53</td>
</tr>
<tr>
<td>740</td>
<td>61,84</td>
<td>60</td>
<td>69,54</td>
<td>76,98</td>
</tr>
<tr>
<td>900</td>
<td>71,58</td>
<td>157,84</td>
<td>199,7</td>
<td>86,5</td>
</tr>
<tr>
<td>1230</td>
<td>100</td>
<td>140,93</td>
<td>129,32</td>
<td>193,47</td>
</tr>
<tr>
<td>1500</td>
<td>202,11</td>
<td>78,41</td>
<td>162,58</td>
<td>211,37</td>
</tr>
<tr>
<td>0.084</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>61,9</td>
<td>66,98</td>
<td>69,55</td>
<td>77,91</td>
</tr>
<tr>
<td>740</td>
<td>67,07</td>
<td>72,94</td>
<td>72,3</td>
<td>92,98</td>
</tr>
<tr>
<td>900</td>
<td>66,23</td>
<td>95,6</td>
<td>100,31</td>
<td>103,5</td>
</tr>
<tr>
<td>1230</td>
<td>102,69</td>
<td>117,07</td>
<td>139,21</td>
<td>179,05</td>
</tr>
<tr>
<td>1500</td>
<td>127,31</td>
<td>132,51</td>
<td>212,04</td>
<td>218,88</td>
</tr>
<tr>
<td>0.112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>49,67</td>
<td>110,56</td>
<td>119,54</td>
<td>126,43</td>
</tr>
<tr>
<td>740</td>
<td>136,89</td>
<td>139,22</td>
<td>140,29</td>
<td>142,5</td>
</tr>
<tr>
<td>900</td>
<td>133,75</td>
<td>145,77</td>
<td>147,54</td>
<td>146,13</td>
</tr>
<tr>
<td>1230</td>
<td>133,45</td>
<td>151,59</td>
<td>139,81</td>
<td>181,08</td>
</tr>
<tr>
<td>1500</td>
<td>143,75</td>
<td>102,66</td>
<td>199,16</td>
<td>204,07</td>
</tr>
<tr>
<td>0.157</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>87,32</td>
<td>73,32</td>
<td>88,22</td>
<td>105,05</td>
</tr>
<tr>
<td>740</td>
<td>75,98</td>
<td>102,94</td>
<td>108,31</td>
<td>104,48</td>
</tr>
<tr>
<td>900</td>
<td>75,78</td>
<td>106,52</td>
<td>113,1</td>
<td>116,98</td>
</tr>
<tr>
<td>1230</td>
<td>84</td>
<td>115,37</td>
<td>141,67</td>
<td>156,78</td>
</tr>
<tr>
<td>1500</td>
<td>78,23</td>
<td>101,62</td>
<td>199,69</td>
<td>199,72</td>
</tr>
<tr>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>78,8</td>
<td>106,29</td>
<td>132,71</td>
<td>137,05</td>
</tr>
<tr>
<td>740</td>
<td>59,53</td>
<td>105,98</td>
<td>124,25</td>
<td>116,37</td>
</tr>
<tr>
<td>900</td>
<td>82,62</td>
<td>91,1</td>
<td>113,15</td>
<td>132,09</td>
</tr>
<tr>
<td>1230</td>
<td>57,66</td>
<td>108,84</td>
<td>138,92</td>
<td>156,86</td>
</tr>
<tr>
<td>1500</td>
<td>101,16</td>
<td>96,75</td>
<td>83,48</td>
<td>173,05</td>
</tr>
<tr>
<td>0.225</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>67,74</td>
<td>56,7</td>
<td>103,89</td>
<td>130,26</td>
</tr>
<tr>
<td>740</td>
<td>82,76</td>
<td>85,72</td>
<td>109,52</td>
<td>112,3</td>
</tr>
<tr>
<td>900</td>
<td>59,94</td>
<td>94,21</td>
<td>112,23</td>
<td>131,03</td>
</tr>
<tr>
<td>1230</td>
<td>105,48</td>
<td>109,64</td>
<td>144,43</td>
<td>157,22</td>
</tr>
<tr>
<td>1500</td>
<td>107,97</td>
<td>114,91</td>
<td>162,98</td>
<td>183,54</td>
</tr>
</tbody>
</table>
III.3 Système floue

Nous avons choisi, un système d’inférence flou de type Mamdani avec trois variables à l’entrée (profondeur de passe, avance par tour, et vitesse de rotation), et une variable à la sortie (température de coupe).

![Diagram](Figure III.1 Entrées et sorties du système flou.)

III.4 Modélisation floue

III.4.1 Les variables floues

Pour la construction du premier modèle nous avons choisi comme paramètres d’entrée la profondeur de passe, l’avance par tour et la vitesse de rotation, et comme variables de sortie nous avons choisi la température de coupe.

Les tableaux III.3 et III.4 présentent l’univers du discours pour les variables d’entrée et de sortie pour les deux types de plaquettes : revêtue et non revêtue respectivement.

a. Plaquette non revêtue

<table>
<thead>
<tr>
<th>Valeur MIN</th>
<th>Valeur MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profondeur de passe (a)</td>
<td>0.1</td>
</tr>
<tr>
<td>Avance par tour (f)</td>
<td>0.045</td>
</tr>
<tr>
<td>Vitesse de rotation (N)</td>
<td>440</td>
</tr>
<tr>
<td>Température (T°)</td>
<td>35</td>
</tr>
</tbody>
</table>
b. Plaquette revêtue

Tableau III.4 Valeurs limites pour les entrées et les sorties (plaquettes revêtue)

<table>
<thead>
<tr>
<th></th>
<th>Valeur MIN</th>
<th>Valeur MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profondeur de passe (a)</td>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>Avance par tour (f)</td>
<td>0.045</td>
<td>0.225</td>
</tr>
<tr>
<td>Vitesse de rotation (N)</td>
<td>440</td>
<td>1500</td>
</tr>
<tr>
<td>Température (T °)</td>
<td>41</td>
<td>218</td>
</tr>
</tbody>
</table>

III.4.2 Les sous-ensembles flous

L’ensemble des variables utilisés dans notre étude sont découpée en catégories appelées variables linguistiques. Chaque variable linguistique correspond à un intervalle de donnée numérique.

a. Plaquette non revêtue

Les variables linguistiques pour la première variable (profondeur de passe) sont choisis comme il est indiqué dans la figure III.2

![Figure III.2 Variables linguistiques pour la profondeur de passe.](image)

Les variables linguistiques pour la deuxième variable (vitesse de rotation) sont choisis comme il est indiqué dans la figure III.3

![Figure III.3 Variables linguistiques pour la vitesse de rotation.](image)

Les variables linguistiques pour la troisième variable (avance par tour) sont choisis comme il est indiqué dans la figure III.4.
À fin de bien définir les variables linguistiques pour la sortie nous avons utilisé le nuage de point (figure III.5) qui présente la distribution des valeurs de la température de coupe obtenus lors des essais dans l’univers de discours, ce qui nous aident à déterminer les intervalles flous vis-à-vis à la concertation des valeurs de la température de coupe dans chaque intervalle.

Figure III.5 Les valeurs de la température de coupe pour l’ensemble des essais (plaquette non revêtue).

Alors les variables linguistiques pour la sortie (Température) est choisie comme il est indiqué dans la figure III.6.
b. Plaquette revêtue

Les variables linguistiques pour la première variable (profondeur de passe) sont choisis comme il est indiqué dans la figure III.7.

Les variables linguistiques pour la deuxième variable (vitesse de rotation) sont choisis comme il est indiqué dans la figure III.8.
Les variables linguistiques pour la troisième variable (avance par tour) sont choisies comme il est indiqué dans la figure III.9.

Figure III.9 Variables linguistiques pour l’avance par tour

A fin de bien définir les variables linguistiques pour la sortie nous avons utilisé le nuage de point (figure III.10) qui présente la distribution des valeurs de la température de coupe obtenus lors des essais dans l’univers de discours, ce qui nous aidons à déterminer les intervalles flous vis-à-vis à la concertation des valeurs de la température de coupe dans chaque intervalle.

Figure III.10 Les valeurs de la température de coupe pour l’ensemble des essais (plaquette revêtue).

Alors le variable linguistique pour la sortie (Température) est choisie comme il est indiqué dans la figure III.11
III.4.3 Les fonctions d’appartenance

On associe à chacune des variables un ensemble de termes caractérisés par des fonctions d'appartenances définies sur le même univers de discours.

La fonction d’appartenance permet de définir pour chaque variable son pourcentage de vérité à l’affirmation. Les fonctions d’appartenance se présentent sous différentes formes, y compris triangulaire, trapézoïdale, gaussienne et sigmoïde.

Dans cette partie, les fonctions d'appartenance triangulaire ont été utilisées pour les paramètres d'entrée et le paramètre de sortie.

Figure III.11 Variables linguistiques pour la température.
Chapitre III
Résultats et Discussions

a. Plaquette non revêtue

Les paramètres d’entrées

Les fonctions d’appartenance utilisées pour les paramètres d’entrées sont représentées dans les figures III. 12, III.13 et III.14.

En se basant sur le choix des variables linguistiques pour la profondeur de passe effectué dans la figure III.12 la fonction d’appartenance pour la première variable d’entrée est donnée comme suit :

![Figure III.12 Fonctions d’appartenance pour la profondeur de passe.](image)

En se basant sur le choix des variables linguistiques pour la vitesse de rotation effectué dans la figure III.13 la fonction d’appartenance pour la deuxième variable d’entrée est donnée comme suit :

![Figure III.13 Fonctions d’appartenance pour la vitesse de rotation.](image)

En se basant sur le choix des variables linguistiques pour l’avance par tour effectué dans la figure III.14 la fonction d’appartenance pour la troisième variable d’entrée est donnée comme suit :
Chapitre III

Résultats et Discussions

Figure III.14 Fonctions d’appartenance pour l’avance par tour.

Le paramètre de sortie

Les fonctions d’appartenance utilisées pour le paramètre de sortie (température de coupe) est représentée dans la figure III. 15.

Figure III.15 Fonctions d’appartenance pour la température de coupe.

b. Plaquette revêtue

Les paramètres d’entrées

En se basant sur le choix des variables linguistiques pour la profondeur de passe effectué dans la figure III.16 la fonction d’appartenance pour la première variable d’entrée est donnée comme suit :

Figure III.16 Fonctions d’appartenance pour la profondeur de passe
En se basant sur le choix des variables linguistiques pour la vitesse de rotation effectué dans la figure III.17, la fonction d’appartenance pour la troisième variable d’entrée est donnée comme suit :

![Figure III.17](image)

Figure III.17 Fonctions d’appartenance pour la vitesse de rotation.

En se basant sur le choix des variables linguistiques pour l’avance par tour effectué dans la figure III.18, la fonction d’appartenance pour la deuxième variable d’entrée est donnée comme suit :

![Figure III.18](image)

Figure III.18 Fonctions d’appartenance pour l’avance par tour.

Le paramètre de sortie

La fonction d’appartenance utilisée pour le paramètre de sortie (température de coupe) est représentée dans la figure III. 19.

![Figure III.19](image)

Figure III.19 Fonctions d’appartenance pour la température de coupe.
III.5 Les règles floues

120 règles floues (plaquette non revêtue) et 72 règles floues (plaquette revêtue) règles floues, ont été établies en fonction des conditions expérimentales indiquées dans le tableau III.5. En adhérant au processus de composition maximum-minimum, la logique floue de ces règles a produit une sortie floue.

Chaque règle prend la forme suivante :

\[\text{Si } f \text{ est (variable linguistique) et } V, \text{ est (variable linguistique) et } a \text{ est (variable linguistique) Alors } T \text{ est (variable linguistique)} \]

L’ensemble des règles floues élaborées sont regroupées dans les tableaux ci-dessous.

a. Plaquette non revêtue

Tableau III.5 Les règles floues (usinage avec plaquette non revêtue).

<table>
<thead>
<tr>
<th>(a(mm))</th>
<th>TP</th>
<th>P</th>
<th>M</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(mm/tr))</td>
<td>(N(tr/min))</td>
<td>TP</td>
<td>P</td>
<td>M</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>P</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>M</td>
<td>A</td>
<td>D</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>G</td>
<td>D</td>
<td>D</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>F</td>
<td>C</td>
<td>F</td>
<td>E</td>
</tr>
<tr>
<td>M</td>
<td>D</td>
<td>F</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>A</td>
<td>E</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>P</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>M</td>
<td>C</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>G</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>C</td>
<td>E</td>
<td>F</td>
<td>E</td>
</tr>
<tr>
<td>M</td>
<td>D</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>G</td>
<td>C</td>
<td>H</td>
<td>E</td>
<td>G</td>
</tr>
<tr>
<td>P</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>H</td>
</tr>
<tr>
<td>M</td>
<td>E</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>G</td>
</tr>
<tr>
<td>P</td>
<td>C</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>M</td>
<td>C</td>
<td>C</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>G</td>
<td>C</td>
<td>G</td>
<td>F</td>
<td>H</td>
</tr>
</tbody>
</table>
b. Plaquette revêtue

Tableau III.6 Les règles floues (usinage avec plaquette revêtue).

<table>
<thead>
<tr>
<th>f (mm / tr)</th>
<th>TP</th>
<th>P</th>
<th>M</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (tr / min)</td>
<td>A</td>
<td>D</td>
<td>F</td>
<td>D</td>
</tr>
<tr>
<td>TP</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>J</td>
<td>L</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>I</td>
<td>H</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>D</td>
<td>J</td>
<td>L</td>
</tr>
<tr>
<td>P</td>
<td>C</td>
<td>C</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>I</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>M</td>
<td>B</td>
<td>G</td>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>L</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>E</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>G</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>F</td>
<td>L</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>D</td>
<td>F</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>F</td>
<td>H</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>G</td>
<td>I</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>E</td>
<td>E</td>
<td>H</td>
</tr>
<tr>
<td>TG</td>
<td>C</td>
<td>B</td>
<td>F</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>E</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>E</td>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>G</td>
<td>I</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>G</td>
<td>J</td>
<td>K</td>
</tr>
</tbody>
</table>
III.6 Défuzzification

Dans cette étape, les opérateurs utilisés sont les opérateurs de type « Mamdani ». Donc le moteur d’inférence sera utilisé la méthode du centre de gravité pour la défuzzification. La figure ci-dessous décrit la fenêtre des règles sous MATLAB et les résultats obtenus.

III.7 Résultats et discussion

Les résultats sont obtenus lors de la défuzzification qui est la dernière étape dans la logique floue. Cette étape consiste à transformer les valeurs linguistiques issues de régulateur flou en valeurs numériques.

III.7.1 Étude de la précision et de l’erreur du système flou

Les erreurs ont été calculées en mesurant l’écart entre la valeur mesurée et la valeur prédite. Les erreurs peuvent être calculées à l’aide de l’équation III-1. Le pourcentage d’erreurs individuelles a été obtenu en divisant la différence absolue de la prédiction par la valeur de mesure.

\[
e_i = \left(\frac{T_{exp} - T_{sim}}{T_{exp}} \right) \times 100
\]

(III-1)

La précision est calculée en trouvant l’approchement de la valeur prédite à la valeur mesurée. Dans l’équation III-2, A est la précision du modèle et N est le nombre total de jeux de données testés. La précision du modèle est la précision individuelle moyenne.
Chapitre III
Résultats et Discussions

\[A = \frac{1}{N} \sum_{i=1}^{N} \left(1 - \frac{T_{\text{exp}} - T_{\text{sim}}}{T_{\text{exp}}} \right) \times 100 \]
(III-2)

Dans notre cas \(N = 120 \) essais N=72 pour chaque plaquette.

Les tableaux III.7 et III.8 regroupent l’ensemble des résultats obtenus par notre système flou.

a. Plaquette non revêtue

Tableau III.7 Les résultats du système flou (Usinage par plaquette non revêtue)

<table>
<thead>
<tr>
<th>No (^{\circ}) d'essai</th>
<th>(a) ((mm))</th>
<th>(N) ((tr / min))</th>
<th>(f) ((mm / tr))</th>
<th>Température expérimentale</th>
<th>Température simulation</th>
<th>Erreur ((e_i)) (%)</th>
<th>Précision ((A)) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,1</td>
<td>0,045</td>
<td>440</td>
<td>38,19</td>
<td>35,7</td>
<td>6,52</td>
<td>93,48</td>
</tr>
<tr>
<td>2</td>
<td>0,1</td>
<td>0,045</td>
<td>740</td>
<td>35,76</td>
<td>35,7</td>
<td>0,16</td>
<td>99,84</td>
</tr>
<tr>
<td>3</td>
<td>0,1</td>
<td>0,045</td>
<td>900</td>
<td>55,02</td>
<td>52</td>
<td>5,48</td>
<td>94,52</td>
</tr>
<tr>
<td>4</td>
<td>0,1</td>
<td>0,084</td>
<td>440</td>
<td>63,67</td>
<td>62,7</td>
<td>1,52</td>
<td>98,48</td>
</tr>
<tr>
<td>5</td>
<td>0,1</td>
<td>0,084</td>
<td>740</td>
<td>52,5</td>
<td>52</td>
<td>0,95</td>
<td>99,05</td>
</tr>
<tr>
<td>6</td>
<td>0,1</td>
<td>0,084</td>
<td>900</td>
<td>39,95</td>
<td>35,7</td>
<td>10,63</td>
<td>89,37</td>
</tr>
<tr>
<td>7</td>
<td>0,1</td>
<td>0,112</td>
<td>440</td>
<td>46,95</td>
<td>47,3</td>
<td>0,74</td>
<td>99,26</td>
</tr>
<tr>
<td>8</td>
<td>0,1</td>
<td>0,112</td>
<td>740</td>
<td>48,97</td>
<td>47,3</td>
<td>3,41</td>
<td>96,59</td>
</tr>
<tr>
<td>9</td>
<td>0,1</td>
<td>0,112</td>
<td>900</td>
<td>56,9</td>
<td>56,3</td>
<td>1,05</td>
<td>98,95</td>
</tr>
<tr>
<td>10</td>
<td>0,1</td>
<td>0,157</td>
<td>440</td>
<td>46,8</td>
<td>47,3</td>
<td>1,06</td>
<td>98,94</td>
</tr>
<tr>
<td>11</td>
<td>0,1</td>
<td>0,157</td>
<td>740</td>
<td>54,76</td>
<td>52</td>
<td>5,04</td>
<td>94,96</td>
</tr>
<tr>
<td>12</td>
<td>0,1</td>
<td>0,157</td>
<td>900</td>
<td>48,26</td>
<td>47,3</td>
<td>1,98</td>
<td>98,02</td>
</tr>
<tr>
<td>13</td>
<td>0,1</td>
<td>0,18</td>
<td>440</td>
<td>63,57</td>
<td>62,7</td>
<td>1,36</td>
<td>98,64</td>
</tr>
<tr>
<td>14</td>
<td>0,1</td>
<td>0,18</td>
<td>740</td>
<td>58,39</td>
<td>56,3</td>
<td>3,57</td>
<td>96,43</td>
</tr>
<tr>
<td>15</td>
<td>0,1</td>
<td>0,18</td>
<td>900</td>
<td>61,7</td>
<td>62,7</td>
<td>1,62</td>
<td>98,38</td>
</tr>
<tr>
<td>16</td>
<td>0,1</td>
<td>0,225</td>
<td>440</td>
<td>52,38</td>
<td>52</td>
<td>0,72</td>
<td>99,28</td>
</tr>
<tr>
<td>17</td>
<td>0,1</td>
<td>0,225</td>
<td>740</td>
<td>49,23</td>
<td>47,3</td>
<td>3,92</td>
<td>96,08</td>
</tr>
<tr>
<td>18</td>
<td>0,1</td>
<td>0,225</td>
<td>900</td>
<td>48,98</td>
<td>47,3</td>
<td>3,42</td>
<td>96,58</td>
</tr>
<tr>
<td>19</td>
<td>0,15</td>
<td>0,045</td>
<td>440</td>
<td>44,56</td>
<td>41,7</td>
<td>6,41</td>
<td>93,59</td>
</tr>
<tr>
<td>20</td>
<td>0,15</td>
<td>0,045</td>
<td>740</td>
<td>50,19</td>
<td>52</td>
<td>3,6</td>
<td>96,40</td>
</tr>
<tr>
<td>21</td>
<td>0,15</td>
<td>0,045</td>
<td>900</td>
<td>56,43</td>
<td>52</td>
<td>1,19</td>
<td>98,81</td>
</tr>
<tr>
<td>22</td>
<td>0,15</td>
<td>0,084</td>
<td>440</td>
<td>56,45</td>
<td>56,3</td>
<td>0,26</td>
<td>99,74</td>
</tr>
<tr>
<td>23</td>
<td>0,15</td>
<td>0,084</td>
<td>740</td>
<td>61,93</td>
<td>62,7</td>
<td>1,24</td>
<td>98,76</td>
</tr>
<tr>
<td>24</td>
<td>0,15</td>
<td>0,084</td>
<td>900</td>
<td>57,36</td>
<td>56,3</td>
<td>1,84</td>
<td>98,16</td>
</tr>
<tr>
<td>25</td>
<td>0,15</td>
<td>0,112</td>
<td>440</td>
<td>52,41</td>
<td>52</td>
<td>0,78</td>
<td>99,22</td>
</tr>
<tr>
<td>26</td>
<td>0,15</td>
<td>0,112</td>
<td>740</td>
<td>55,24</td>
<td>56,3</td>
<td>1,91</td>
<td>98,09</td>
</tr>
<tr>
<td>№</td>
<td>0,15</td>
<td>0,157</td>
<td>0,18</td>
<td>0,225</td>
<td>0,225</td>
<td>0,225</td>
<td>0,225</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>27</td>
<td>0,15</td>
<td>0,112</td>
<td>900</td>
<td>55,49</td>
<td>56,3</td>
<td>1,45</td>
<td>98,55</td>
</tr>
<tr>
<td>28</td>
<td>0,15</td>
<td>0,157</td>
<td>440</td>
<td>55,66</td>
<td>56,3</td>
<td>1,14</td>
<td>98,86</td>
</tr>
<tr>
<td>29</td>
<td>0,15</td>
<td>0,157</td>
<td>740</td>
<td>57,23</td>
<td>56,3</td>
<td>1,62</td>
<td>98,38</td>
</tr>
<tr>
<td>30</td>
<td>0,15</td>
<td>0,157</td>
<td>900</td>
<td>77,7</td>
<td>80,5</td>
<td>3,6</td>
<td>96,40</td>
</tr>
<tr>
<td>31</td>
<td>0,15</td>
<td>0,18</td>
<td>440</td>
<td>63,97</td>
<td>62,7</td>
<td>1,98</td>
<td>98,02</td>
</tr>
<tr>
<td>32</td>
<td>0,15</td>
<td>0,18</td>
<td>740</td>
<td>62,51</td>
<td>62,7</td>
<td>0,3</td>
<td>99,70</td>
</tr>
<tr>
<td>33</td>
<td>0,15</td>
<td>0,18</td>
<td>900</td>
<td>67,48</td>
<td>70</td>
<td>3,73</td>
<td>96,27</td>
</tr>
<tr>
<td>34</td>
<td>0,15</td>
<td>0,225</td>
<td>440</td>
<td>55</td>
<td>56,3</td>
<td>2,36</td>
<td>97,64</td>
</tr>
<tr>
<td>35</td>
<td>0,15</td>
<td>0,225</td>
<td>740</td>
<td>49,67</td>
<td>47,3</td>
<td>4,77</td>
<td>95,23</td>
</tr>
<tr>
<td>36</td>
<td>0,15</td>
<td>0,225</td>
<td>900</td>
<td>44,91</td>
<td>47,3</td>
<td>5,32</td>
<td>94,52</td>
</tr>
<tr>
<td>37</td>
<td>0,2</td>
<td>0,045</td>
<td>440</td>
<td>45,94</td>
<td>47,3</td>
<td>2,96</td>
<td>97,04</td>
</tr>
<tr>
<td>38</td>
<td>0,2</td>
<td>0,045</td>
<td>740</td>
<td>53,06</td>
<td>52</td>
<td>1,99</td>
<td>98,01</td>
</tr>
<tr>
<td>39</td>
<td>0,2</td>
<td>0,045</td>
<td>900</td>
<td>44,91</td>
<td>47,3</td>
<td>5,32</td>
<td>94,68</td>
</tr>
<tr>
<td>40</td>
<td>0,2</td>
<td>0,084</td>
<td>440</td>
<td>60,94</td>
<td>62,7</td>
<td>2,88</td>
<td>97,12</td>
</tr>
<tr>
<td>41</td>
<td>0,2</td>
<td>0,084</td>
<td>740</td>
<td>63,27</td>
<td>62,7</td>
<td>0,9</td>
<td>99,10</td>
</tr>
<tr>
<td>42</td>
<td>0,2</td>
<td>0,084</td>
<td>900</td>
<td>60,54</td>
<td>62,7</td>
<td>3,56</td>
<td>96,44</td>
</tr>
<tr>
<td>43</td>
<td>0,2</td>
<td>0,112</td>
<td>440</td>
<td>52,19</td>
<td>52</td>
<td>0,36</td>
<td>99,64</td>
</tr>
<tr>
<td>44</td>
<td>0,2</td>
<td>0,112</td>
<td>740</td>
<td>59,23</td>
<td>56,3</td>
<td>4,94</td>
<td>95,06</td>
</tr>
<tr>
<td>45</td>
<td>0,2</td>
<td>0,112</td>
<td>900</td>
<td>57,95</td>
<td>56,3</td>
<td>2,84</td>
<td>97,16</td>
</tr>
<tr>
<td>46</td>
<td>0,2</td>
<td>0,157</td>
<td>440</td>
<td>60,05</td>
<td>62,7</td>
<td>4,41</td>
<td>95,59</td>
</tr>
<tr>
<td>47</td>
<td>0,2</td>
<td>0,157</td>
<td>740</td>
<td>58,52</td>
<td>56,3</td>
<td>3,79</td>
<td>96,21</td>
</tr>
<tr>
<td>48</td>
<td>0,2</td>
<td>0,157</td>
<td>900</td>
<td>57,99</td>
<td>56,3</td>
<td>2,91</td>
<td>97,09</td>
</tr>
<tr>
<td>49</td>
<td>0,2</td>
<td>0,18</td>
<td>440</td>
<td>62,43</td>
<td>62,7</td>
<td>0,43</td>
<td>99,57</td>
</tr>
<tr>
<td>50</td>
<td>0,2</td>
<td>0,18</td>
<td>740</td>
<td>66,57</td>
<td>62,7</td>
<td>5,81</td>
<td>94,19</td>
</tr>
<tr>
<td>51</td>
<td>0,2</td>
<td>0,18</td>
<td>900</td>
<td>63,49</td>
<td>62,7</td>
<td>1,24</td>
<td>98,76</td>
</tr>
<tr>
<td>52</td>
<td>0,2</td>
<td>0,225</td>
<td>440</td>
<td>58,58</td>
<td>56,3</td>
<td>3,89</td>
<td>96,11</td>
</tr>
<tr>
<td>53</td>
<td>0,2</td>
<td>0,225</td>
<td>740</td>
<td>69,52</td>
<td>70</td>
<td>69</td>
<td>31,00</td>
</tr>
<tr>
<td>54</td>
<td>0,2</td>
<td>0,225</td>
<td>900</td>
<td>65,65</td>
<td>62,7</td>
<td>4,49</td>
<td>95,51</td>
</tr>
<tr>
<td>55</td>
<td>0,25</td>
<td>0,045</td>
<td>440</td>
<td>48,5</td>
<td>47,3</td>
<td>2,47</td>
<td>97,53</td>
</tr>
<tr>
<td>56</td>
<td>0,25</td>
<td>0,045</td>
<td>740</td>
<td>59,28</td>
<td>56,3</td>
<td>6,1</td>
<td>93,90</td>
</tr>
<tr>
<td>57</td>
<td>0,25</td>
<td>0,045</td>
<td>900</td>
<td>59,28</td>
<td>56,3</td>
<td>5,02</td>
<td>94,98</td>
</tr>
<tr>
<td>58</td>
<td>0,25</td>
<td>0,084</td>
<td>440</td>
<td>58,31</td>
<td>56,3</td>
<td>3,44</td>
<td>96,56</td>
</tr>
<tr>
<td>59</td>
<td>0,25</td>
<td>0,084</td>
<td>740</td>
<td>70,38</td>
<td>70</td>
<td>0,53</td>
<td>99,47</td>
</tr>
<tr>
<td>60</td>
<td>0,25</td>
<td>0,084</td>
<td>900</td>
<td>60,7</td>
<td>62,7</td>
<td>3,29</td>
<td>96,71</td>
</tr>
<tr>
<td>61</td>
<td>0,25</td>
<td>0,112</td>
<td>440</td>
<td>58,47</td>
<td>56,3</td>
<td>3,71</td>
<td>96,29</td>
</tr>
<tr>
<td>62</td>
<td>0,25</td>
<td>0,112</td>
<td>740</td>
<td>62,42</td>
<td>62,7</td>
<td>0,44</td>
<td>99,56</td>
</tr>
<tr>
<td>63</td>
<td>0,25</td>
<td>0,112</td>
<td>900</td>
<td>58,09</td>
<td>56,3</td>
<td>3,08</td>
<td>96,92</td>
</tr>
</tbody>
</table>
Chapitre III

Résultats et Discussions

64	0,25	0,157	440	59,54	56,3	5,44	94,56
65	0,25	0,157	740	58,31	56,3	3,44	96,56
66	0,25	0,157	900	74,11	70	5,54	94,46
67	0,25	0,18	440	76,74	80,5	4,89	95,11
68	0,25	0,18	740	62,51	62,7	0,3	99,70
69	0,25	0,18	900	74,11	69,05	1,37	98,63
70	0,25	0,225	440	59,95	56,3	6,08	93,92
71	0,25	0,225	740	71,55	70	2,16	97,84
72	0,25	0,225	900	84,22	80,5	4,41	95,59

b. Plaquette revêtue

Tableau III.8 Les résultats du système flou (Usinage par plaquette revêtue)

<table>
<thead>
<tr>
<th>N° d’essai</th>
<th>$a (mm)$</th>
<th>N (tr/min)</th>
<th>f (mm/tr)</th>
<th>Température expérimentale</th>
<th>Température simulation</th>
<th>Erreur $\left(%\right)$</th>
<th>Précision $\left(%\right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,1</td>
<td>0,045</td>
<td>440</td>
<td>41,82</td>
<td>42,8</td>
<td>2,35</td>
<td>97,65</td>
</tr>
<tr>
<td>2</td>
<td>0,1</td>
<td>0,045</td>
<td>740</td>
<td>61,84</td>
<td>61,7</td>
<td>0,23</td>
<td>99,77</td>
</tr>
<tr>
<td>3</td>
<td>0,1</td>
<td>0,045</td>
<td>900</td>
<td>71,58</td>
<td>73,3</td>
<td>2,4</td>
<td>97,6</td>
</tr>
<tr>
<td>4</td>
<td>0,1</td>
<td>0,045</td>
<td>1230</td>
<td>100</td>
<td>102</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>0,1</td>
<td>0,045</td>
<td>1500</td>
<td>202,11</td>
<td>208</td>
<td>2,91</td>
<td>97,09</td>
</tr>
<tr>
<td>6</td>
<td>0,1</td>
<td>0,084</td>
<td>440</td>
<td>61,9</td>
<td>61,7</td>
<td>0,32</td>
<td>99,68</td>
</tr>
<tr>
<td>7</td>
<td>0,1</td>
<td>0,084</td>
<td>740</td>
<td>67,07</td>
<td>61,7</td>
<td>8</td>
<td>92</td>
</tr>
<tr>
<td>8</td>
<td>0,1</td>
<td>0,084</td>
<td>900</td>
<td>66,23</td>
<td>61,7</td>
<td>6,84</td>
<td>93,16</td>
</tr>
<tr>
<td>9</td>
<td>0,1</td>
<td>0,084</td>
<td>1230</td>
<td>102,69</td>
<td>102</td>
<td>0,67</td>
<td>99,33</td>
</tr>
<tr>
<td>10</td>
<td>0,1</td>
<td>0,084</td>
<td>1500</td>
<td>127,31</td>
<td>130</td>
<td>2,11</td>
<td>97,89</td>
</tr>
<tr>
<td>11</td>
<td>0,1</td>
<td>0,112</td>
<td>440</td>
<td>49,67</td>
<td>51,7</td>
<td>4,08</td>
<td>95,92</td>
</tr>
<tr>
<td>12</td>
<td>0,1</td>
<td>0,112</td>
<td>740</td>
<td>136,89</td>
<td>130</td>
<td>5,03</td>
<td>94,97</td>
</tr>
<tr>
<td>13</td>
<td>0,1</td>
<td>0,112</td>
<td>900</td>
<td>133,75</td>
<td>130</td>
<td>2,8</td>
<td>97,2</td>
</tr>
<tr>
<td>14</td>
<td>0,1</td>
<td>0,112</td>
<td>1230</td>
<td>133,45</td>
<td>130</td>
<td>2,59</td>
<td>97,41</td>
</tr>
<tr>
<td>15</td>
<td>0,1</td>
<td>0,112</td>
<td>1500</td>
<td>143,75</td>
<td>143</td>
<td>0,52</td>
<td>99,48</td>
</tr>
<tr>
<td>16</td>
<td>0,1</td>
<td>0,157</td>
<td>440</td>
<td>87,32</td>
<td>81,7</td>
<td>6,44</td>
<td>93,56</td>
</tr>
<tr>
<td>17</td>
<td>0,1</td>
<td>0,157</td>
<td>740</td>
<td>75,98</td>
<td>73,3</td>
<td>3,53</td>
<td>96,47</td>
</tr>
<tr>
<td>18</td>
<td>0,1</td>
<td>0,157</td>
<td>900</td>
<td>75,78</td>
<td>73,3</td>
<td>3,72</td>
<td>96,28</td>
</tr>
<tr>
<td>19</td>
<td>0,1</td>
<td>0,157</td>
<td>1230</td>
<td>84</td>
<td>90</td>
<td>7,14</td>
<td>92,86</td>
</tr>
<tr>
<td>20</td>
<td>0,1</td>
<td>0,157</td>
<td>1500</td>
<td>78,23</td>
<td>73,3</td>
<td>6,3</td>
<td>93,7</td>
</tr>
</tbody>
</table>

Précision moyen : 97,09
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>0,1</td>
<td>0,18</td>
<td>440</td>
<td>78,8</td>
<td>73,3</td>
<td>6,98</td>
</tr>
<tr>
<td>22</td>
<td>0,1</td>
<td>0,18</td>
<td>740</td>
<td>59,53</td>
<td>61,7</td>
<td>3,65</td>
</tr>
<tr>
<td>23</td>
<td>0,1</td>
<td>0,18</td>
<td>900</td>
<td>82,62</td>
<td>73,3</td>
<td>11,28</td>
</tr>
<tr>
<td>24</td>
<td>0,1</td>
<td>0,18</td>
<td>1230</td>
<td>57,66</td>
<td>61,7</td>
<td>7</td>
</tr>
<tr>
<td>25</td>
<td>0,1</td>
<td>0,18</td>
<td>1500</td>
<td>101,16</td>
<td>102</td>
<td>0,83</td>
</tr>
<tr>
<td>26</td>
<td>0,1</td>
<td>0,225</td>
<td>440</td>
<td>67,74</td>
<td>61,7</td>
<td>8,91</td>
</tr>
<tr>
<td>27</td>
<td>0,1</td>
<td>0,225</td>
<td>740</td>
<td>82,76</td>
<td>73,3</td>
<td>11,43</td>
</tr>
<tr>
<td>28</td>
<td>0,1</td>
<td>0,225</td>
<td>900</td>
<td>59,94</td>
<td>61,7</td>
<td>2,93</td>
</tr>
<tr>
<td>29</td>
<td>0,15</td>
<td>0,045</td>
<td>440</td>
<td>69,97</td>
<td>73,3</td>
<td>4,76</td>
</tr>
<tr>
<td>30</td>
<td>0,15</td>
<td>0,045</td>
<td>740</td>
<td>60</td>
<td>61,7</td>
<td>2,83</td>
</tr>
<tr>
<td>31</td>
<td>0,15</td>
<td>0,045</td>
<td>900</td>
<td>157,84</td>
<td>158</td>
<td>0,1</td>
</tr>
<tr>
<td>32</td>
<td>0,15</td>
<td>0,045</td>
<td>1230</td>
<td>140,93</td>
<td>143</td>
<td>1,47</td>
</tr>
<tr>
<td>33</td>
<td>0,15</td>
<td>0,084</td>
<td>440</td>
<td>66,98</td>
<td>61,7</td>
<td>7,88</td>
</tr>
<tr>
<td>34</td>
<td>0,15</td>
<td>0,084</td>
<td>740</td>
<td>72,94</td>
<td>73,3</td>
<td>0,49</td>
</tr>
<tr>
<td>35</td>
<td>0,15</td>
<td>0,084</td>
<td>900</td>
<td>95,6</td>
<td>90</td>
<td>5,86</td>
</tr>
<tr>
<td>36</td>
<td>0,15</td>
<td>0,084</td>
<td>1230</td>
<td>117,07</td>
<td>115</td>
<td>1,77</td>
</tr>
<tr>
<td>37</td>
<td>0,15</td>
<td>0,084</td>
<td>1500</td>
<td>115,37</td>
<td>115</td>
<td>0,32</td>
</tr>
<tr>
<td>38</td>
<td>0,15</td>
<td>0,112</td>
<td>440</td>
<td>110,56</td>
<td>115</td>
<td>4,01</td>
</tr>
<tr>
<td>39</td>
<td>0,15</td>
<td>0,112</td>
<td>740</td>
<td>139,22</td>
<td>143</td>
<td>2,72</td>
</tr>
<tr>
<td>40</td>
<td>0,15</td>
<td>0,112</td>
<td>900</td>
<td>145,77</td>
<td>143</td>
<td>1,9</td>
</tr>
<tr>
<td>41</td>
<td>0,15</td>
<td>0,112</td>
<td>1230</td>
<td>151,59</td>
<td>158</td>
<td>4,23</td>
</tr>
<tr>
<td>42</td>
<td>0,15</td>
<td>0,112</td>
<td>1500</td>
<td>102,66</td>
<td>102</td>
<td>0,64</td>
</tr>
<tr>
<td>43</td>
<td>0,15</td>
<td>0,112</td>
<td>1500</td>
<td>102,66</td>
<td>102</td>
<td>0,64</td>
</tr>
<tr>
<td>44</td>
<td>0,15</td>
<td>0,112</td>
<td>1230</td>
<td>151,59</td>
<td>158</td>
<td>4,23</td>
</tr>
<tr>
<td>45</td>
<td>0,15</td>
<td>0,112</td>
<td>1500</td>
<td>102,66</td>
<td>102</td>
<td>0,64</td>
</tr>
<tr>
<td>46</td>
<td>0,15</td>
<td>0,112</td>
<td>1500</td>
<td>102,66</td>
<td>102</td>
<td>0,64</td>
</tr>
<tr>
<td>47</td>
<td>0,15</td>
<td>0,112</td>
<td>1230</td>
<td>151,59</td>
<td>158</td>
<td>4,23</td>
</tr>
<tr>
<td>48</td>
<td>0,15</td>
<td>0,112</td>
<td>1500</td>
<td>102,66</td>
<td>102</td>
<td>0,64</td>
</tr>
<tr>
<td>49</td>
<td>0,15</td>
<td>0,112</td>
<td>1500</td>
<td>102,66</td>
<td>102</td>
<td>0,64</td>
</tr>
<tr>
<td>50</td>
<td>0,15</td>
<td>0,112</td>
<td>1230</td>
<td>151,59</td>
<td>158</td>
<td>4,23</td>
</tr>
<tr>
<td>51</td>
<td>0,15</td>
<td>0,112</td>
<td>1500</td>
<td>102,66</td>
<td>102</td>
<td>0,64</td>
</tr>
<tr>
<td>52</td>
<td>0,15</td>
<td>0,112</td>
<td>1500</td>
<td>102,66</td>
<td>102</td>
<td>0,64</td>
</tr>
<tr>
<td>53</td>
<td>0,15</td>
<td>0,112</td>
<td>1230</td>
<td>151,59</td>
<td>158</td>
<td>4,23</td>
</tr>
<tr>
<td>54</td>
<td>0,15</td>
<td>0,112</td>
<td>1500</td>
<td>102,66</td>
<td>102</td>
<td>0,64</td>
</tr>
<tr>
<td>55</td>
<td>0,15</td>
<td>0,112</td>
<td>1500</td>
<td>102,66</td>
<td>102</td>
<td>0,64</td>
</tr>
<tr>
<td>56</td>
<td>0,15</td>
<td>0,112</td>
<td>1230</td>
<td>151,59</td>
<td>158</td>
<td>4,23</td>
</tr>
<tr>
<td>57</td>
<td>0,15</td>
<td>0,112</td>
<td>1500</td>
<td>102,66</td>
<td>102</td>
<td>0,64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>0,15</td>
<td>0,225</td>
<td>900</td>
<td>94,21</td>
<td>90</td>
<td>4,47</td>
</tr>
<tr>
<td>59</td>
<td>0,15</td>
<td>0,225</td>
<td>1230</td>
<td>109,64</td>
<td>115</td>
<td>4,89</td>
</tr>
<tr>
<td>60</td>
<td>0,15</td>
<td>0,225</td>
<td>1500</td>
<td>114,91</td>
<td>115</td>
<td>0,07</td>
</tr>
<tr>
<td>61</td>
<td>0,2</td>
<td>0,045</td>
<td>440</td>
<td>105,46</td>
<td>102</td>
<td>3,28</td>
</tr>
<tr>
<td>62</td>
<td>0,2</td>
<td>0,045</td>
<td>740</td>
<td>69,54</td>
<td>73,3</td>
<td>5,41</td>
</tr>
<tr>
<td>63</td>
<td>0,2</td>
<td>0,045</td>
<td>900</td>
<td>199,7</td>
<td>114,91</td>
<td>115</td>
</tr>
<tr>
<td>64</td>
<td>0,2</td>
<td>0,045</td>
<td>1230</td>
<td>129,32</td>
<td>130</td>
<td>0,07</td>
</tr>
<tr>
<td>65</td>
<td>0,2</td>
<td>0,045</td>
<td>1500</td>
<td>162,58</td>
<td>158</td>
<td>2,82</td>
</tr>
<tr>
<td>66</td>
<td>0,2</td>
<td>0,084</td>
<td>440</td>
<td>69,55</td>
<td>73,3</td>
<td>5,39</td>
</tr>
<tr>
<td>67</td>
<td>0,2</td>
<td>0,084</td>
<td>740</td>
<td>72,3</td>
<td>73,3</td>
<td>1,38</td>
</tr>
<tr>
<td>68</td>
<td>0,2</td>
<td>0,084</td>
<td>900</td>
<td>100,31</td>
<td>102</td>
<td>1,68</td>
</tr>
<tr>
<td>69</td>
<td>0,2</td>
<td>0,084</td>
<td>1230</td>
<td>139,21</td>
<td>143</td>
<td>2,72</td>
</tr>
<tr>
<td>70</td>
<td>0,2</td>
<td>0,084</td>
<td>1500</td>
<td>212,04</td>
<td>208</td>
<td>1,9</td>
</tr>
<tr>
<td>71</td>
<td>0,2</td>
<td>0,112</td>
<td>440</td>
<td>119,54</td>
<td>115</td>
<td>3,8</td>
</tr>
<tr>
<td>72</td>
<td>0,2</td>
<td>0,112</td>
<td>740</td>
<td>140,29</td>
<td>143</td>
<td>1,93</td>
</tr>
<tr>
<td>73</td>
<td>0,2</td>
<td>0,112</td>
<td>900</td>
<td>147,54</td>
<td>143</td>
<td>3,07</td>
</tr>
<tr>
<td>74</td>
<td>0,2</td>
<td>0,112</td>
<td>1230</td>
<td>139,81</td>
<td>143</td>
<td>2,28</td>
</tr>
<tr>
<td>75</td>
<td>0,2</td>
<td>0,112</td>
<td>1500</td>
<td>199,16</td>
<td>208</td>
<td>4,44</td>
</tr>
<tr>
<td>76</td>
<td>0,2</td>
<td>0,157</td>
<td>440</td>
<td>88,22</td>
<td>90</td>
<td>2,01</td>
</tr>
<tr>
<td>77</td>
<td>0,2</td>
<td>0,157</td>
<td>740</td>
<td>108,31</td>
<td>115</td>
<td>6,18</td>
</tr>
<tr>
<td>78</td>
<td>0,2</td>
<td>0,157</td>
<td>900</td>
<td>113,1</td>
<td>115</td>
<td>1,68</td>
</tr>
<tr>
<td>79</td>
<td>0,2</td>
<td>0,157</td>
<td>1230</td>
<td>141,67</td>
<td>143</td>
<td>0,94</td>
</tr>
<tr>
<td>80</td>
<td>0,2</td>
<td>0,157</td>
<td>1500</td>
<td>199,69</td>
<td>208</td>
<td>4,16</td>
</tr>
<tr>
<td>81</td>
<td>0,2</td>
<td>0,18</td>
<td>440</td>
<td>132,71</td>
<td>130</td>
<td>2,04</td>
</tr>
<tr>
<td>82</td>
<td>0,2</td>
<td>0,18</td>
<td>740</td>
<td>124,25</td>
<td>130</td>
<td>4,63</td>
</tr>
<tr>
<td>83</td>
<td>0,2</td>
<td>0,18</td>
<td>900</td>
<td>113,15</td>
<td>115</td>
<td>1,63</td>
</tr>
<tr>
<td>84</td>
<td>0,2</td>
<td>0,18</td>
<td>1230</td>
<td>138,92</td>
<td>130</td>
<td>6,42</td>
</tr>
<tr>
<td>85</td>
<td>0,2</td>
<td>0,18</td>
<td>1500</td>
<td>83,48</td>
<td>90</td>
<td>7,81</td>
</tr>
<tr>
<td>86</td>
<td>0,2</td>
<td>0,225</td>
<td>440</td>
<td>103,89</td>
<td>102</td>
<td>1,82</td>
</tr>
<tr>
<td>87</td>
<td>0,2</td>
<td>0,225</td>
<td>740</td>
<td>109,52</td>
<td>115</td>
<td>5</td>
</tr>
<tr>
<td>88</td>
<td>0,2</td>
<td>0,225</td>
<td>900</td>
<td>112,23</td>
<td>115</td>
<td>2,47</td>
</tr>
<tr>
<td>89</td>
<td>0,2</td>
<td>0,225</td>
<td>1230</td>
<td>144,43</td>
<td>143</td>
<td>0,99</td>
</tr>
<tr>
<td>90</td>
<td>0,2</td>
<td>0,225</td>
<td>1500</td>
<td>162,98</td>
<td>158</td>
<td>3,06</td>
</tr>
<tr>
<td>91</td>
<td>0,25</td>
<td>0,045</td>
<td>440</td>
<td>70,53</td>
<td>73,3</td>
<td>3,93</td>
</tr>
<tr>
<td>92</td>
<td>0,25</td>
<td>0,045</td>
<td>740</td>
<td>76,98</td>
<td>73,3</td>
<td>4,78</td>
</tr>
<tr>
<td>93</td>
<td>0,25</td>
<td>0,045</td>
<td>900</td>
<td>86,5</td>
<td>90</td>
<td>4,05</td>
</tr>
<tr>
<td>94</td>
<td>0,25</td>
<td>0,045</td>
<td>1230</td>
<td>193,47</td>
<td>184</td>
<td>4,89</td>
</tr>
</tbody>
</table>
III.7.2 Représentation schématique des résultats

L’analyse de ces surfaces montre que la température de coupe avec les deux types de plaquettes augmente avec l’augmentation des conditions de coupe (profondeur de passe, avance par tour et vitesse de rotation).

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>0,25</td>
<td>0,045</td>
<td>1500</td>
<td>211,37</td>
<td>208</td>
<td>1,59</td>
<td>98,41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>0,25</td>
<td>0,084</td>
<td>440</td>
<td>77,91</td>
<td>73,3</td>
<td>5,92</td>
<td>94,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>0,25</td>
<td>0,084</td>
<td>740</td>
<td>92,98</td>
<td>90</td>
<td>3,2</td>
<td>96,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>0,25</td>
<td>0,084</td>
<td>900</td>
<td>103,5</td>
<td>102</td>
<td>1,45</td>
<td>98,55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>0,25</td>
<td>0,084</td>
<td>1230</td>
<td>179,05</td>
<td>184</td>
<td>2,76</td>
<td>97,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0,25</td>
<td>0,084</td>
<td>1500</td>
<td>218,88</td>
<td>208</td>
<td>4,97</td>
<td>95,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>0,25</td>
<td>0,112</td>
<td>440</td>
<td>126,43</td>
<td>130</td>
<td>2,82</td>
<td>97,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>0,25</td>
<td>0,112</td>
<td>740</td>
<td>142,5</td>
<td>143</td>
<td>0,35</td>
<td>99,65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>0,25</td>
<td>0,112</td>
<td>900</td>
<td>146,13</td>
<td>143</td>
<td>2,14</td>
<td>97,86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>0,25</td>
<td>0,112</td>
<td>1230</td>
<td>181,08</td>
<td>184</td>
<td>1,61</td>
<td>98,39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>0,25</td>
<td>0,112</td>
<td>1500</td>
<td>204,07</td>
<td>208</td>
<td>1,93</td>
<td>98,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>0,25</td>
<td>0,157</td>
<td>440</td>
<td>105,05</td>
<td>118</td>
<td>12,33</td>
<td>87,67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>0,25</td>
<td>0,157</td>
<td>740</td>
<td>104,48</td>
<td>102</td>
<td>2,37</td>
<td>97,63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>0,25</td>
<td>0,157</td>
<td>900</td>
<td>116,98</td>
<td>115</td>
<td>1,69</td>
<td>98,31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>0,25</td>
<td>0,157</td>
<td>1230</td>
<td>156,78</td>
<td>158</td>
<td>0,77</td>
<td>99,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>0,25</td>
<td>0,157</td>
<td>1500</td>
<td>199,72</td>
<td>208</td>
<td>4,15</td>
<td>95,85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0,25</td>
<td>0,18</td>
<td>440</td>
<td>137,05</td>
<td>130</td>
<td>5,14</td>
<td>94,86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>0,25</td>
<td>0,18</td>
<td>740</td>
<td>116,37</td>
<td>115</td>
<td>1,17</td>
<td>98,83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>0,25</td>
<td>0,18</td>
<td>900</td>
<td>132,09</td>
<td>130</td>
<td>1,58</td>
<td>98,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>0,25</td>
<td>0,18</td>
<td>1230</td>
<td>156,86</td>
<td>158</td>
<td>0,73</td>
<td>99,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>0,25</td>
<td>0,18</td>
<td>1500</td>
<td>173,05</td>
<td>184</td>
<td>6,32</td>
<td>93,68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>0,25</td>
<td>0,225</td>
<td>440</td>
<td>130,26</td>
<td>130</td>
<td>0,2</td>
<td>99,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>0,25</td>
<td>0,225</td>
<td>740</td>
<td>112,3</td>
<td>115</td>
<td>2,4</td>
<td>97,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>0,25</td>
<td>0,225</td>
<td>900</td>
<td>131,03</td>
<td>130</td>
<td>0,79</td>
<td>99,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>0,25</td>
<td>0,225</td>
<td>1230</td>
<td>157,22</td>
<td>158</td>
<td>0,5</td>
<td>99,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>0,25</td>
<td>0,225</td>
<td>1500</td>
<td>183,54</td>
<td>184</td>
<td>0,25</td>
<td>99,75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La précision moyen : 96,43
L’analyse des surfaces conduit à conclure que les grandes valeurs de la température de coupe est obtenue avec une combinaison des valeurs maximales de deux conditions de coupe, donc il est recommandé d’éviter cette combinaison lors de réglage de la machine.

La plus grande valeur de la température de coupe est obtenue avec une combinaison d’une valeur maximale de l’avance par tour et une valeur maximale de la profondeur de passe.

Les surfaces ci-dessus montrent clairement que la condition la plus influente sur la température de coupe est l’avance par tour, suivi par la profondeur de passe puis la vitesse de rotation de la broche.

Figure III.21 Variation de la température prévue par la logique floue en fonction des paramètres de coupe (plaquette non revêtue)
Chapitre III

Résultats et Discussions

Figure III.22 Variation de la température prévue par la logique floue en fonction des paramètres de coupe (plaquette revêtue).

III.7.3 Validation des résultats

La figure III.23 et III.24 représentent une superposition des deux courbes de variation de la température de coupe de l’acier Z200C12 : expérimentale et prédite pour les deux de plaquettes : revêtue et non revêtue respectivement.
Afin de valider nos résultats le pourcentage d'erreur pour été calculé et la précision du modèle de la logique floue a été déterminé.

Les conditions expérimentales, les résultats de la température de coupe et les valeurs prédites du modèle flou sont indiquées dans les tableaux III. 7 et III. 8.

Le pourcentage moyen d'erreur pour la prédiction du modèle flou a été de 2.91% et 3.57% pour les deux avec plaquette non revêtue et revêtue respectivement. Le niveau d'erreur
indique que les résultats de la température de coupe prédits par le modèle de la logique floue étaient très proches des valeurs expérimentales réelles.

La plupart des erreurs de prédiction sont dues à des erreurs dans le travail expérimental, nous verrons ça clairement si nous revenons aux courbes de la variation de la température de coupe en fonction des conditions de coupe dans le travail élaboré par A. Dokma et S. Mezzar [2] que nous avons utilisé comme base de données pour notre modèle.

Les tableaux III. 7 et III. 8 montrent également que la précision du modèle flou était de 97.09% et 96.43% pour les deux plaquettes non revêtue et revêtue respectivement. Le pourcentage de précision montre que le modèle proposé peut être utilisé avec succès pour prédire la température de coupe de l’acier Z200C12.

Une comparaison de la température de coupe pour les deux types de plaquettes revêtue et non revêtue montre que l’allure de la courbe de la température reste la même comme le montre les figures III.23, III.24.

III.7.4 Comparaison de la température de coupe pour les deux types de plaquettes revêtue et non revêtue (modèle floue)

![Figure III.25](image)

Figure III.25 Comparaison de la température de coupe pour les deux types de plaquettes revêtue et non revêtue obtenue pour le modèle floue.

La figure ci-dessus montre que la température de coupe est plus élevée lorsqu’en utilise des plaquettes revêtues, ce qui traduit par la conductivité élevée des revêtements des plaquettes.
III.8 Conclusion

Conclusion Générale
Conclusion Générale

Dans ce mémoire, on a examiné la variation de la température de coupe de l’acier Z200 C12 en fonction des paramètres de coupe en utilisant un système flou et en se basant sur une base de donnée extraite du travail de A. Dokma et S. Mezzar [2].

On peut tirer les conclusions suivantes:

- Lorsque les variations de la température de coupe sont interprétées en fonction des changements de la vitesse de rotation, de l’avance par tour et de la profondeur de passe, nous avons constaté que l’augmentation de l’avance par tour et la vitesse de rotation entraîné une augmentation de la température et que l’avance par tour s’est révélée être un paramètre influent dans l’élévation de la température.

- Les valeurs de prédiction de la température de coupe Z200 C12 calculées à partir du système flou se révèlent en bon accord par rapport aux valeurs de la température obtenues expérimentalement.

- L’écart moyen des données de test était de 2,91% et 3,57% pour les plaquettes revêtues et non revêtues respectivement, ce qui correspond à une précision de 97,09% et 96,43% pour les plaquettes revêtues et non revêtues respectivement.

- La prédiction de la température de coupe de l’acier Z200 C12 sans nécessiter une étude expérimentale avec le modèle floue peut fournir à la fois une simplicité et un calcul rapide.

- Il est démontré que le modèle flou développé dans notre étude peuvent être utilisés comme méthode efficace et alternative pour les études expérimentales et peuvent contribuer en termes de temps et d'optimisation de l'usinage.
Bibliographie
Bibliographie

Résumé

Dans cette étude, la technique de la logique floue a été utilisé pour la prédiction de la température de coupe de l'acier Z200C12 en fonction des paramètres de coupe en tournage. Nous avons développé un modèle avec trois entrées et une sortie. Les résultats de la température de coupe obtenus à partir du modèle flou et les résultats expérimentaux obtenus en utilisant une pièce en acier Z200C12 avec des thermocouples type K dans des plaquettes revêtues et non revêtues sont comparés. L'écart moyen des données de test était de 2,91% et 3,57% pour les plaquettes revêtues et non revêtues respectivement, ce qui correspond à une précision de 97,09% et 96,43% pour les plaquettes revêtues et non revêtues respectivement. Le modèle flou fournit une prédiction plus précise et très utile dans le calcul de la température de coupe de l'acier Z200C12.

Abstract

In this paper, the technique of fuzzy logic has been presented for the prediction of the cutting temperature of the Z200C12 steel as a function of the cutting parameters in turning. We developed a model with three inputs and one output. The results of the cutting temperature obtained from the fuzzy model and the experimental results obtained using a Z200C12 steel part with K type thermocouples integrated into coated and uncoated inserts are compared. The average error of the test data was 2.91% and 3.57% for the coated and uncoated inserts respectively, which corresponds to an accuracy of 97.09% and 96.43% for the coated and uncoated inserts respectively. The fuzzy model provides a more accurate prediction and very useful in calculating the cutting temperature of Z200C12 steel.