Mémoire
MASTER ACADEMIQUE

Domaine : Sciences de la nature et de la vie
Filière : Ecologie et environnement
Spécialité : Sciences de l’environnement

Présenté par : Melle NEKHLA Oum Kalthoum
Melle REMOUINE Khadidja

Thème
Étude préliminaire de la réutilisation des eaux épurées par la station de lagunage aéré de Ouargla pour l’arrosage d’espèces forestières

Soutenu publiquement
le : 19/06/2013

Devant le jury :

M. DADI BOUHOUNE M. M.C.A Président UKM Ouargla
Mr IDDER T. M.C.A Encadreur UKM Ouargla
Mr IDDER A. M.A.A Co-Promoteur UKM Ouargla
Mr MENSESOU M. M.A.B Examinateur UKM Ouargla
Mr OURAHMOUNE H. Ing Invité ONA Ouargla

Année Universitaire : 2012 /2013
"أَوْلَهُ يُرْوِئُونَ أَنَا نَسُوقُ الْمَاءَ إِلَى الأَرْضِ
الْبَرْزِ فَخَرِّجُوهُ بِهِ زَرْعًا تَآَكَلَ مِنْهُ أَنْعَامُكُمْ
وَأَنفَسُصُمْ أَنَا لَا يُبْصِرُونَ "

الآية 27 سورة السجدة
Dédicace

Je dédie ce travail

Aux plus chers dans ma vie : mes grands parents MIMA et PAPA SAID et je ne pourrai jamais les remercier assez.
À la lumière de mes jours et les étoiles de mes nuits : mes parents Que Dieu les garde pour leur Sacrifice et leur dévouement pour mon bonheur
Je dédie mon travail aussi à :
Mes frères : MiNou et Nadir
Mes sœurs : Djazia, Ibtissem et Manel
À ma nièce : Aicha rayhana
À Mama Fatima et Mama Djazia
À Mes petits cousins : Anis - Ritadj-Ahmed-Doha-Amina
Mes oncles, mes tantes et mes cousins
À tous mes grandes familles NEKHLA et BERGUIGA
À ma très chère collègue Khadija
À mes chères amies de la promotion de 2ème Master Sciences de l’environnement

2012/2013

À mes amies : Amina-Khadidja-Nadjat-Soumiya-Naouar- Razika-Saliha-Boutheina-Ilham-Hadjer
À mes amis les plus proches qui avec son sens de l’humain est pour moi un soutien inestimable

Oum Kalthoum
Dédicace

Je dédie ce modeste travail
À mes très chers parents qui m’ont toujours
donné de l’encouragement tout au long de mes étude, et pour leurs amours et leur soutien quotidien.

À mon cher frère : Hadj Mohammed Kamel
À mes chères sœurs : Nour iman, Kaouthar et son mari

À tous les membres de ma famille, petits et grands, REMOUNE et MOUSSAOUI

À Ma très chère collègue Oum kalthoum

À tous mes amies et collègues de du département.

KHADIDJA
TABLE DES MATIÈRES

Introduction 1

PARTIE BIBLIOGRAPHIQUE

CHAPITRE I : Généralités sur les eaux usées

I.1. Définition des eaux usées 3
I.2. Origine des eaux usées 3
I.3. Les eaux usées : un réservoir à polluants 4
I.4. Critères de pollution d’une eau 5
I.4.1. Les paramètres physicochimiques 5
I.4.1.1. Matières en suspension 5
I.4.1.2. Température 5
I.4.1.3. Conductivité électrique 5
I.4.1.4. Potentiel hydrogène pH 5
I.4.1.5. Demande chimique en oxygène DCO 6
I.4.1.6. Demande biologique en oxygène DBO 6
I.4.1.7. Oxygène dissous 6
I.4.1.8. Les autres éléments 6
I.4.2. Les paramètres microbiologiques 8

CHAPITRE II : Traitement des eaux usées par lagunage

II.1. L’objectif du traitement des eaux usées 9
II.2. Le lagunage 9
II.2.1. Définition du lagunage 9
II.2.2. Classification des types de lagunages 9
II.2.2.1. Selon l’agent responsable de l’épuration 9
II. 2.2.2. Selon l’apport d'aération 10
A. Le lagunage naturel 10
B. Le lagunage aéré 11
 a. Lagunes aérées aérobies 11
 b. Lagunes aérées facultatives 11
 c. Avantages et inconvénients du lagunage aéré 12
II.3. Les organismes vivants dans les bassins de lagunage et leur rôle 12
Chapitre III : La réutilisation des eaux épurées

III.1. Définition de la réutilisation des eaux usées épurées
III.2. Domaines de réutilisation des eaux épurées
III.2.1. Agriculture irriguée
III.2.2. Réutilisation industrielle
III.2.3. Réutilisation en zone urbaine
III.2.4. Recharge des nappes
III.2.5. Production d'eau potable
III.2.6. Rejets dans un milieu récepteur
III.2.7. Réutilisation en aquaculture et pisciculture
III.2.8. Réutilisation des eaux épurées pour l'irrigation
III.2.8.1. Au niveau mondial
III.2.8.2. Au niveau national
III.2.8.3. Au niveau régional
III.3. Paramètres à prendre en considération pour la réutilisation des eaux traitées
III.3.1. Microorganismes contenus dans les eaux usées
III.3.2. Eléments traces
III.3.2.1. Micropolluants inorganiques
III.3.2.2. Micropolluants organiques
III.3.3. Salinité
III.3.4. Chloro et sodium
III.3.5. Autres paramètres
III.3.5.1. Substances nutritives
III.4. Risques de réutilisation des eaux usées épurées

Chapitre IV : Présentation des espèces

Acacia farnesiana et Albizia julibrissin

IV.1. Acacia farnesiana
IV.1.1. Taxonomie
IV.1.2. Description botanique
IV.1.3. Utilisation
IV.2. Albizia julibrissin
PARTIE EXPERIMENTALE

Chapitre V : Matériel et Méthodes

V.1.	Présentation de la région d'étude	32
V.1.1.	Situation géographique	32
V.1.2.	Climatologie	33
V.1.3.	Climagramme d'Emberger	34
V.1.4.	Sol	35
V.1.5.	Hydrgéologie	35
V.1.6.	Géologie	35
V.2.	Présentation de la station d'épuration par lagunage aérié	36
V.2.1.	Situation géographique	36
V.2.2.	Caractéristiques de la S.T.E.P. Ouargla	36
V.2.3.	Schéma des bassins de la S.T.E.P de Ouargla	37
V.2.4.	Principe de traitement	38
V.2.4.1.	Prétraitement	38
V.2.4.2.	Ouvrage de répartition	38
V.2.4.3.	Traitement secondaire	38
A.1.	Lagunes d’aération (1er étage)	38
A.2.	Lagunes d’aération (2ème étage)	39
B.	Traitement complémentaire (Lagune de finition)	39
V.2.4.4.	Traitement des boues	39
V.2.4.5.	Sortie des eaux épurées	39
V.3.	Principe expérimental	39
V.3.1.	L’objectif	39
V.3.2.	Protocole expérimental	40
V.3.3.	Site expérimental	42
V.3.4.	Étapes de mise en place de l’expérience	42
V.3.4.1.	Etape de préparation	42
V.3.4.2.	Etapes de plantation	44
V.4.	Caractéristiques des eaux d’irrigation	45
V.4.1. Techniques d’analyse des eaux d’irrigation 45
V.4.1.1. Prélèvement 45
 i. Sur le plan physico-chimique 45
 ii. Sur le plan bactériologique 46
V.4.1.2. Analyses physico-chimiques des eaux épurées et des eaux de robinet 46
 A. Détermination des matières en suspension MES 46
 B. Demande chimique en oxygène DCO 47
 C. Demande biologique en oxygène DBO₅ 47
 D. Détermination des nitrates- nitrites 48
 E. Détermination de la conductivité électrique, de la salinité et de la température 48
F. Détermination de l’O₂ dissous 48
G. Détermination du pH 48
H. Dosage des cations et des anions 48
 a. Dosage du Calcium Ca⁺⁺ et du Magnésium Mg⁺⁺ 48
 b. Dosage du potassium K⁺ et du sodium Na⁺ 48
 c. Dosage des carbonates CO₃⁻ et bicarbonates HCO₃⁻ 49
 d. Dosage des sulfates solubles SO₄²⁻ 49
 e. Dosage des chlorures solubles Cl⁻ 49
V.4.1.3. Analyses bactériologiques des eaux épurées 49
 A. Recherche et dénombrement des coliformes totaux et fécaux 50
 B. Recherche et dénombrement des streptocoques totaux et fécaux 50
 C. Recherche et dénombrement des Clostridium sulfito-réducteurs 50
 D. Recherche et dénombrement des staphylocoques 50
V. 5. Matériel végétal 51
V.6. Caractérisation du sol du site expérimental 51
V. 6.1. Matériel 52
V. 6.2. Méthodes d’analyses 52
V. 6.2.1. Description des horizons du site expérimental 52
V. 6.2.2. Analyse granulométrique 53
V. 6.2.3. Mesure du pH 53
V. 6.2.4. Mesure de la conductivité électrique 53
Chapitre VI: Résultats et discussion

VI.1. Analyses physico-chimiques des eaux épurées 54
VI.2. Résultats des analyses bactériologiques 54
VI.3. Analyses physico-chimiques des eaux de robinet 55
VI.4. Analyse du sol 56
VI.4.1. Caractérisation morphologique et analytique du profil 1 et du profil 2 56
VI.4.1.1. Description des horizons du profil 1 57
VI.4.1.2. Description des horizons du profil 2 59
VI.5. Résultats des mesures biométriques des plantes 60
VI.5.1.1. Suivi de la croissance de l’Albizia julibrissin 61
 i. Croissance en Hauteur 61
 ii. Croissance en Diamètre 61
VI.5.1.2. Suivi de la croissance de l’Acacia farnesiana 62
 i. Croissance en Hauteur 63
 ii. Croissance en Diamètre 63

Conclusion 66

Référence

Annexes
LISTE DES ABRÉVIATIONS

<table>
<thead>
<tr>
<th>Abréviation</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONA</td>
<td>Office National de l’Assainissement</td>
</tr>
<tr>
<td>ANRH</td>
<td>Agence Nationale des Ressources Hydrauliques</td>
</tr>
<tr>
<td>STEP</td>
<td>Station d’Epuration des eaux usées</td>
</tr>
<tr>
<td>CE</td>
<td>Conductivité Electrique</td>
</tr>
<tr>
<td>DBO₃</td>
<td>Demande Biologique en Oxygène</td>
</tr>
<tr>
<td>DCO</td>
<td>Demande Chimique en Oxygène</td>
</tr>
<tr>
<td>pH</td>
<td>Potentiel d’Hydrogène</td>
</tr>
<tr>
<td>MES</td>
<td>Matières En Suspension</td>
</tr>
<tr>
<td>RN</td>
<td>Route Nationale</td>
</tr>
<tr>
<td>REUT</td>
<td>Réutilisation des Eaux Usées Traitées</td>
</tr>
<tr>
<td>Tableau</td>
<td>Titre</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>Tableau N° 01</td>
<td>Recommandations microbiologiques révisées de l'OMS (1989) pour la réutilisation des eaux usées avant utilisation en agriculture.</td>
</tr>
<tr>
<td>Tableau N° 02</td>
<td>Normes physico-chimiques de rejets de l'OMS appliquées en Algérie.</td>
</tr>
<tr>
<td>Tableau N° 03</td>
<td>Quelques micro-organismes pathogènes rencontrés dans les eaux usées.</td>
</tr>
<tr>
<td>Tableau N° 04</td>
<td>Risques de réutilisation des eaux usées épurées.</td>
</tr>
<tr>
<td>Tableau N° 05</td>
<td>Les données climatiques de la ville de Ouargla.</td>
</tr>
<tr>
<td>Tableau N° 06</td>
<td>Les données de la station de Ouargla.</td>
</tr>
<tr>
<td>Tableau N° 07</td>
<td>Bilan ionique des eaux épurées.</td>
</tr>
<tr>
<td>Tableau N° 08</td>
<td>Résultats des analyses bactériologiques.</td>
</tr>
<tr>
<td>Tableau N° 09</td>
<td>Bilan ionique des eaux de robinet.</td>
</tr>
<tr>
<td>Tableau N° 10</td>
<td>Caractéristiques morphologiques et analytiques de deux profils du sol.</td>
</tr>
<tr>
<td>Tableau N° 11</td>
<td>Valeurs moyennes de croissance en hauteur et en diamètre pour l'Albizia julibrissin dans les deux blocs expérimentaux.</td>
</tr>
<tr>
<td>Tableau N° 12</td>
<td>Valeurs moyennes de croissance en hauteur et en diamètre pour l'Acacia farnesiana dans les deux blocs expérimentaux.</td>
</tr>
<tr>
<td>Tableau N° 13</td>
<td>Résultats d'analyses physico-chimiques des eaux traitées.</td>
</tr>
<tr>
<td>Tableau N° 14</td>
<td>Résultats d'analyses DCO-DBO5- MES des eaux traitées.</td>
</tr>
<tr>
<td>Tableau N° 15</td>
<td>Résultats d'analyses NO3- N2- NH4-NT et PT des eaux traitées.</td>
</tr>
<tr>
<td>Tableau N° 16</td>
<td>Les mesures biométriques des plantes (10/03/2013 et 09/04/2013)</td>
</tr>
<tr>
<td>Tableau N° 17</td>
<td>Les mesures biométriques des plantes (16/04/2013).</td>
</tr>
<tr>
<td>Tableau N° 18</td>
<td>Les mesures biométriques des plantes (23/04/2013).</td>
</tr>
<tr>
<td>Tableau N° 19</td>
<td>Les mesures biométriques des plantes (30/04/2013).</td>
</tr>
<tr>
<td>Tableau N° 20</td>
<td>Les mesures biométriques des plantes (07/05/2013).</td>
</tr>
<tr>
<td>Tableau N° 21</td>
<td>Les mesures biométriques des plantes (14/05/2013).</td>
</tr>
</tbody>
</table>
LISTE DES FIGURES

<table>
<thead>
<tr>
<th>Figure N°</th>
<th>Titre</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure N° 01</td>
<td>Les deux types de lagunes aérées.</td>
<td>11</td>
</tr>
<tr>
<td>Figure N° 02</td>
<td>Classification des métaux en fonction de leur danger et de leur intérêt agronomique.</td>
<td>24</td>
</tr>
<tr>
<td>Figure N° 03</td>
<td>Acacia farnesiana</td>
<td>29</td>
</tr>
<tr>
<td>Figure N° 04</td>
<td>Albizia julibrissin</td>
<td>30</td>
</tr>
<tr>
<td>Figure N° 05</td>
<td>Position géographique de la région de Ouargla.</td>
<td>32</td>
</tr>
<tr>
<td>Figure N° 06</td>
<td>Situation de ville de Ouargla selon le Climagramme d’Emberger (2002-2012).</td>
<td>34</td>
</tr>
<tr>
<td>Figure N° 07</td>
<td>Situation géographique de la STEP par rapport à la ville de Ouargla.</td>
<td>36</td>
</tr>
<tr>
<td>Figure N° 08</td>
<td>STEP de - Saïd Otba - Ouargla.</td>
<td>37</td>
</tr>
<tr>
<td>Figure N° 09</td>
<td>Schéma de principe du protocole expérimental.</td>
<td>41</td>
</tr>
<tr>
<td>Figure N° 10</td>
<td>Situation du site d’expérimentation dans la STEP</td>
<td>42</td>
</tr>
<tr>
<td>Figure N° 11</td>
<td>Classification des eaux d’irrigation selon Diagramme de RIVERSIDE modifié par DURAND (1958).</td>
<td>56</td>
</tr>
<tr>
<td>Figure N° 12</td>
<td>Granulométrie (%) de l’horizon 1 du profil 1.</td>
<td>58</td>
</tr>
<tr>
<td>Figure N° 13</td>
<td>Granulométrie (%) de l’horizon 2 du profil 1.</td>
<td>58</td>
</tr>
<tr>
<td>Figure N° 14</td>
<td>Granulométrie (%) de l’horizon 3 du profil 1.</td>
<td>58</td>
</tr>
<tr>
<td>Figure N° 15</td>
<td>Granulométrie (%) de l’horizon 1 du profil 2.</td>
<td>59</td>
</tr>
<tr>
<td>Figure N° 16</td>
<td>Granulométrie (%) de l’horizon 2 du profil 2.</td>
<td>59</td>
</tr>
<tr>
<td>Figure N° 17</td>
<td>Granulométrie (%) de l’horizon 3 du profil 2.</td>
<td>60</td>
</tr>
<tr>
<td>Figure N° 18</td>
<td>Courbes de croissance en hauteur d’Albizia julibrissin dans les deux blocs expérimentaux.</td>
<td>62</td>
</tr>
<tr>
<td>Figure N° 19</td>
<td>Courbes de croissance en diamètre d’Albizia julibrissin dans les deux blocs expérimentaux.</td>
<td>62</td>
</tr>
<tr>
<td>Figure N° 20</td>
<td>Courbes de croissance en hauteur d’Acacia farnesiana dans les deux blocs expérimentaux.</td>
<td>64</td>
</tr>
<tr>
<td>Figure N° 21</td>
<td>Courbes de croissance en diamètre d’Acacia farnesiana dans les deux blocs expérimentaux.</td>
<td>64</td>
</tr>
<tr>
<td>Figure N° 22</td>
<td>Recherche et dénombrement des coliformes totaux et fécaux.</td>
<td>Annexe</td>
</tr>
<tr>
<td>Figure N° 23</td>
<td>Recherche et dénombrement des streptocoques totaux et fécaux.</td>
<td>Annexe</td>
</tr>
<tr>
<td>Figure N° 24</td>
<td>Recherche et dénombrement des clostridium sulfito-réducteurs.</td>
<td>Annexe</td>
</tr>
<tr>
<td>Figure N° 25</td>
<td>Recherche des staphylocoques.</td>
<td>Annexe</td>
</tr>
</tbody>
</table>
Liste des Photographies

<table>
<thead>
<tr>
<th>Photo</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo N° 01</td>
<td>Plantes de Casuarinas sp. dans la S.T.E.P. Ouargla.</td>
<td>20</td>
</tr>
<tr>
<td>Photo N° 02</td>
<td>Plantes ornementales au niveau de la S.T.E.P.</td>
<td>20</td>
</tr>
<tr>
<td>Photo N° 03</td>
<td>Les conduites de l’arrivée de l’eau à la S.T.E.P.</td>
<td>38</td>
</tr>
<tr>
<td>Photo N° 04</td>
<td>La sortie de la S.T.E.P.</td>
<td>39</td>
</tr>
<tr>
<td>Photo N° 05</td>
<td>Mesure de diamètre.</td>
<td>40</td>
</tr>
<tr>
<td>Photo N° 06</td>
<td>Mesure de la hauteur.</td>
<td>40</td>
</tr>
<tr>
<td>Photo N° 07</td>
<td>Site expérimental avant la plantation.</td>
<td>42</td>
</tr>
<tr>
<td>Photo N° 08</td>
<td>Marquage avec de la chaux des emplacements de chaque plante à l’aide d’un décamètre.</td>
<td>43</td>
</tr>
<tr>
<td>Photo N° 09</td>
<td>Creusement de trous destinés à la plantation à l’aide d’une pelle mécanique.</td>
<td>43</td>
</tr>
<tr>
<td>Photo N° 10</td>
<td>Nettoyage et élimination des cailloux et des grosses particules grâce à l’utilisation de pioches, de pelles et de brochettes.</td>
<td>43</td>
</tr>
<tr>
<td>Photo N° 11</td>
<td>Homogénéisation des diamètres des trous destinés à la plantation.</td>
<td>44</td>
</tr>
<tr>
<td>Photo N° 12</td>
<td>Placement des plants dans les trous.</td>
<td>44</td>
</tr>
<tr>
<td>Photo N° 13</td>
<td>Le terrain après la plantation (Protection des plants à l’aide de palmes).</td>
<td>44</td>
</tr>
<tr>
<td>Photo N° 14</td>
<td>Irrigation des plants.</td>
<td>45</td>
</tr>
<tr>
<td>Photo N° 15</td>
<td>Albizia julibrissin.</td>
<td>51</td>
</tr>
<tr>
<td>Photo N° 16</td>
<td>Acacia farnesiana.</td>
<td>51</td>
</tr>
<tr>
<td>Photo N° 17</td>
<td>Délimitation des horizons par les couteaux pédologiques.</td>
<td>52</td>
</tr>
<tr>
<td>Photo N° 18</td>
<td>Prise d’échantillons de chaque horizon de chaque profil.</td>
<td>52</td>
</tr>
<tr>
<td>Photo N° 19</td>
<td>Le dégrilleur et le dessableur de la S.T.E.P.</td>
<td>Annexe</td>
</tr>
<tr>
<td>Photo N° 20</td>
<td>Lagune d’aération dans la STEP de Ouargla.</td>
<td>Annexe</td>
</tr>
<tr>
<td>Photo N° 21</td>
<td>Réacteur DCO.</td>
<td>Annexe</td>
</tr>
<tr>
<td>Photo N° 22</td>
<td>Appareil de filtration.</td>
<td>Annexe</td>
</tr>
<tr>
<td>Photo N° 23</td>
<td>DBO-mètre.</td>
<td>Annexe</td>
</tr>
<tr>
<td>Photo N° 24</td>
<td>L’analyse granulométrique (Vibreur).</td>
<td>Annexe</td>
</tr>
<tr>
<td>Photo N° 25</td>
<td>L’agitation.</td>
<td>Annexe</td>
</tr>
<tr>
<td>Photo N° 26</td>
<td>filtration de l’extrait du sol.</td>
<td>Annexe</td>
</tr>
<tr>
<td>Photo N° 27</td>
<td>Mesure de la conductivité.</td>
<td>Annexe</td>
</tr>
</tbody>
</table>
IV.1. *Acacia farnesiana*

L’espèce d’*Acacia farnesiana* est appelé épinard ou pompon jaune. Il est connu sous le nom de cassier, cassie, cassie jaune ou acacie odorante.

Est un mimosa résistant à la sécheresse, mais peu résistant au froid. Il supportera néanmoins des gels brefs de l'ordre de -4°C (LREY, 2005).

IV.1.1. Taxonomie

L’espèce est classé dans :

- **Règne**: Plantae
- **Sous-règne**: Tracheobionta
- **Division**: Magnoliophyta
- **Classe**: Magnoliopsida
- **Sous-classe**: Rosidae
- **Ordre**: Fabales
- **Famille**: Mimosaceae
- **Genre**: *Acacia*

Nom scientifique: *Acacia farnesiana* (L.) Willd, 1806 (WFI, 2013).

Figure N°03: Acacia farnesiana (LENA, 2012)

IV.1.2. Description botanique

L’*Acacia farnesiana* peu exigeant en ce qui concerne la nature du sol, de quatre à six mètres de haute pousse dans les endroits arides et au bord de l'océan. Il colonise les terres perturbées au détriment de la végétation indigène. Il est très ramifié, son écorce est gris-brun (FR, 2013).

Les feuilles sont composées et bipennées, de 2 à 8 paires de pennes (LREY, 2005).

Les fleurs sont des glomérules d'un jaune éclatant, formées d'un seul pétale, elles sont parfois seules mais plus généralement elles sont groupées en bouquets sphériques à l'aspect duveteux. Le glomérule est un type d'inflorescence d'aspect globuleux et dense formée par la juxtaposition de nombreuses fleurs sessiles ou à axes très courts, fixées sur un même niveau.

Les fruits en grappe, bien que dans certaines variétés on les trouve en cercle ou en
bracelet, sont des gousses cylindriques, brunes à noirâtres. Les graines sont brunes (FR, 2013)

IV.1.3. Utilisation

L’espèce a été utilisée pour des objectifs divers surtout :

- La stabilisation des dunes mobiles.
- La création des haies.
- Les fleurs en infusion sont employées dans les affections cardiaques d'origine nerveuse et chez les malades présentant des troubles de la digestion.
- En association surtout avec l’Eucalyptus pour l’amélioration des qualités des sols.
- Extrait des fleurs une huile utilisée en parfumerie.
- Pour un objectif ornemental.
- La croute riche en tannage se qui aide à la teinture des vêtements.
- Production du bois de chauffage (BEN KHALIFA, 2006).

IV.2. Albizia julibrissin

Le genre Albizia comprend environ 150 espèces d'arbres ou d'arbrisseaux originaires d'Asie, d'Afrique et d'Australie.

L’espèce d’Albizia julibrissin appelé également Albizia, arbre à soie ou encore Acacia de Constantinople, est un arbre à feuillage caduc de la même famille que les mimosas. Il peut mesurer jusqu'à environ 12 m de hauteur, mais a généralement une taille plus modeste (Truffaut, 2006).

IV.2.1. Taxonomie

L’espèce est classé dans :

Règne Plantae
Sous-règne Tracheobionta
Division Magnoliophyta
Classe Magnoliopsida
Sous-classe Rosidae
Ordre Fabales
Famille Mimosaceae
Genre Albizia

Figure N°04 : Albizia julibrissin (PIC, 2006)
IV.2.2. Description botanique

Albizia julibrissin est un arbre avec une couronne étalée et brindilles striées. Ce la peut atteindre 16 m de hauteur à maturité.

L’arbre de soie requiert les expositions suivantes : lumière, soleil à 45°C. Elle supporte la sécheresse et adapte à tous les qualités du sol même c’est calcique.

Les feuilles sont bipennées composé avec 4-12 paires de pennes (Parfois 20 paires cultivées spécimens), avec linéaire lancéolées stipules et une glande à la base du rachis (central pétiole). Chaque penne se compose de 10 à 30 paires de linéaire à oblongues folioles 6-12 mm de long, 1- 4 mm de largeur, et en oblique aigu vers l’apex.

Les fleurs pompon gonflés.

Le fruit est une gousse plate de 10 à 20 cm long et 2 à 3 cm de large contenant de nombreuses graines (EDWARD et al, 1993).

IV.2.3. Utilisation

L’**Albizia julibrissin** a été utilisée pour des objectifs divers :

- La fixation des dunes mobiles (car à son croissance rapide).
- Production du bois de chauffage.
- Cette espèce a été largement plantée comme arbre d'ornement et arbre pour l'aménagement paysager le long des routes.
- L'écorce est utilisée pour traiter les ecchymoses et comme vermifuge.
- Aliment de bétail (les graines).
- Les fleurs sont une bonne source de nectar pour les abeilles, des papillons et des oiseaux-mouches.
- Il peut être planté isolé ou en alignement, à proximité d’une terrasse pour procurer un ombrage léger particulièrement agréable.
- Son bois était autrefois recherché pour une utilisation en marqueterie (MAURIC, 2000).
Introduction

L’eau est un bien économique, social et environnemental. Il est donc nécessaire et important d’en garantir la disponibilité dans le temps au moyen de formes d’exploitation durables qui permettent de faire face aux exigences actuelles sans menacer l’équilibre environnemental (BENNOUNA et KEHAL, 2001).

On dit souvent que la prochaine crise pour l’humanité sera celle de l’eau potable et que, par conséquent, sa préservation est une priorité. Pourtant, n’est-il pas fréquent de constater son emploi pour des usages ne le justifiant pas tels que le nettoyage des trottoirs, celui des voitures ou encore l’arrosage de parcs par exemple ? Afin de limiter cette utilisation déraisonnée de l’eau potable, il convient de chercher des approvisionnements alternatifs. La Réutilisation des Eaux Usées Epurées (REUT) pourrait alors en être un.

La REUT recouvre deux notions : le traitement puis la réutilisation proprement dite des eaux usées traitées. Les eaux usées sont celles rejetées par les collectivités, les industries et les particuliers, puis collectées et acheminées par les réseaux d’égouts vers les stations de traitement des eaux usées afin d’y être traitées. Ce n’est qu’à la fin de ces traitements qu’on les appelle eaux usées traitées. La REUT propose de récupérer ces eaux usées traitées, de leur apporter éventuellement un traitement complémentaire et de s’en servir pour différents usages (BOUTIN et al, 2009).

En Algérie, un programme très ambitieux pour la généralisation de l'utilisation des eaux épurées dans le domaine de l'irrigation agricole était annoncé en 2010. Une superficie pilote, estimée à environ 4 500 hectares, englobant les wilayas de Tlemcen (1000 ha), Oran (350 ha), Boumerdès (350 ha), Borj Bou-Arrérij (250 ha), Sétif (800 ha), Constantine (600 ha), Mascara (300 ha) et Ouargla, (800 ha) était visée par ce programme. A l’horizon 2020, l’objectif déclaré est de pouvoir irriguer un territoire beaucoup plus vaste, en utilisant notamment des eaux usées traitées, évacuées des stations d'épuration (STEP) déjà construites ou prévues (BOUDKHIL, 2011).

La réutilisation des eaux usées est un enjeu politique et socio-économique pour le développement futur des services d’eau potable et d’assainissement à l’échelle mondiale. Elle présente, en effet l’avantage majeur d’assurer une ressource alternative à moindre coût permettant de limiter les pénuries d’eau, de mieux préserver les ressources naturelles et de contribuer à la gestion intégrée de l’eau (LAZAROVA et BRISSAUD, 2008).
La réutilisation des eaux épurées permet de contribuer fortement à l’économie des ressources d’eau naturelles qui sont d’origine fossile au Sahara, donc, très difficilement renouvelables.

L’objectif de notre travail consiste à évaluer les possibilités de réutilisation des eaux épurées par la station de lagunage aéré de Ouargla pour l’arrosage des espèces forestières.

Cette expérience préliminaire, réalisée à notre connaissance pour la première fois sous conditions sahariennes en Algérie, a pour ambition d’évaluer les possibilités de valorisation des eaux usées traitées pour l’irrigation de deux espèces d’arbres : Acacia farnesiana et Albizia julibrissin.

Ce travail est scindé en deux parties complémentaires :

La première partie bibliographique qui est composée de quatre chapitres :
Le premier chapitre traite des généralités sur les eaux usées, le deuxième décrit le traitement des eaux usées par lagunage, le troisième expose les différentes possibilités de réutilisation des eaux usées épurées surtout pour l’irrigation des espèces végétales. Le dernier chapitre est consacré à la présentation des espèces végétales choisies dans le cadre de notre expérience.

La seconde partie de notre travail est composée de deux chapitres :
Le premier chapitre concerne la présentation de la région d'étude et de la station d'épuration par lagunage aéré de Ouargla, ainsi que la description de la méthodologie de travail adoptée et le matériel utilisé.

Le second chapitre présente les résultats des différentes analyses effectuées ainsi que les résultats du suivi de la croissance des plantes irriguées.

Une conclusion générale est présentée à la fin de ce mémoire qui synthétise les principaux résultats obtenus. Elle présente enfin quelques recommandations permettant d'améliorer les conditions expérimentales de la réalisation de l'arrosage des espèces forestières sous conditions sahariennes.
Chapitre I

Généralités sur les eaux usées
Chapitre II
Traitement des eaux usées par lagunage
Chapitre III
La réutilisation des eaux usées épurées
Chapitre IV

Présentation des espèces :
Acacia farnesiana et
Albizia julibrissin
Chapitre V
Matériel et Méthodes
Chapitre VI
Résultats et discussion
Introduction
Conclusion
Partie bibliographie
Partie expérimentale
Références bibliographiques
Annexes
I.1. Définition des eaux usées

Les eaux usées constituent l’ensemble des déchets liquides produits par l’homme au cours de ses activités domestiques, agricoles et industrielles. Les eaux usées sont généralement chargées de détritus divers, de matières minérales dissoutes et de produits organiques en suspension (BOUZIANI, 2000).

Elles représentent, une fraction du volume des ressources en eaux utilisables mais leur qualité très médiocre exige une épuration avant leur rejet dans le milieu naturel (THOMAS, 1995).

I.2. Origine des eaux usées

On distingue généralement différents types d’eaux usées en fonction de leur origine ou de leur mode de collecte qui influencent beaucoup leur composition et leurs caractéristiques (THOMAS, 1995).

I.2.1. Les eaux usées domestiques

Les eaux usées domestiques comprennent les eaux ménagères (eaux de toilette, de lessive, de cuisine) et les eaux vannes (urines et matières fécales), dans le système dit « tout à-l’égout » (BAUMONT et al, 2004).

Les eaux usées domestiques contiennent des matières minérales et des matières organiques. Les matières minérales (chlorures, phosphates, sulfates, etc.) et les matières organiques constituées de composés ternaires, tels que les sucres et les graisses (formés de carbone, oxygène et hydrogène, mais aussi d’azote et, dans certains cas, d’autres corps tels que soufre, phosphore, fer, etc.) (VAILLANT, 1974).

I.2.2. Les eaux usées industrielles

Les eaux usées industrielles sont celles qui proviennent des diverses usines de fabrication ou de transformation. Elles peuvent contenir des substances organiques ou minérales corrosives. Les substances sont souvent odorantes et colorées et parfois toxiques et peuvent rompre l'équilibre écologique des milieux récepteurs.
Les eaux évacuées par les industries sont :
- Les eaux de fabrication qui dépendent de la nature de l'industrie.
- Les eaux de lavage des machines.
- Les eaux de refroidissement qui dépendent du taux de recyclage (GAIĐ, 1984).
1.2.3. Eaux usées pluviales

Ces eaux proviennent des eaux de ruissellement qui se forment après une précipitation. Elles peuvent être particulièrement polluées, surtout en début de pluie par deux mécanismes :
✓ Le lessivage des sols et des surfaces imperméabilisées,
✓ La remise en suspension des dépôts des collecteurs (FRANCK, 2002).

1.2.4. Eaux usées urbaines

Les eaux usées urbaines sont d’abord formées par un mélange d’eau usées domestiques et d’eaux usées industrielles. Il s’y ajoute une troisième composante formée par les eaux de pluie et les effluents des installations collectives (hôpitaux, commerces, casernes, etc.) (BANTUOX, 1993).

1.2.5. Eaux de drainage

C’est l’eau de lessivage récupérée après irrigation grâce à un système de drainage. Les pollutions dues aux activités agricoles sont de plusieurs natures :
✓ Apport aux eaux de surface de nitrates et de phosphates utilisées comme engrais, par suite de lessivage de terres perméables. Ces composés minéraux favorisent la prolifération des algues (phénomène d’eutrophisation) qui en abaissent la teneur en oxygène des eaux courantes compromettent la vie des poissons et des animaux aquatiques.
✓ Apport des pesticides chlorés ou phosphorés de désherbants et d’insecticides.
✓ En région viticole, apport du sulfates de cuivre, de composés arsenicaux destinés à la protection des vignes (RICHARD, 1996).

1.3. Les eaux usées : un réservoir à polluants

La composition des eaux usées est extrêmement variable en fonction de leur origine (industrielle, domestique, etc.).

Elles peuvent contenir de nombreuses substances, sous forme solide ou dissoute, ainsi que de nombreux micro-organismes. En fonction de leurs caractéristiques physiques, chimiques, biologiques et du danger sanitaire qu’elles représentent, ces substances peuvent être classées en quatre groupes : les micro-organismes, les matières en suspension, les éléments traces minéraux ou organiques, et les substances nutritives (BAUMONT et al, 2004).
1.4. Critères de pollution d’une eau usée

1.4.1. Les paramètres physico-chimiques

1.4.1.1. Matières en suspension MES

Les matières en suspension sont en majeure partie de nature biodégradable. La plus grande part des microorganismes pathogènes contenus dans les eaux usées est transportée par les MES. Elles donnent également à l’eau une apparence trouble, un mauvais goût et une mauvaise odeur. Cependant, elles peuvent avoir un intérêt pour l’irrigation des cultures (FABY, 1997).

1.4.1.2. Température

La connaissance de la température est essentielle pour les réactions physicochimiques et biologiques régies par leurs caractéristique thermodynamiques et cinétiques. A titre d’exemple, la concentration à saturation de l’oxygène dissous, plus l’eau est chaude et plus sa concentration limite diminue, le pH et la conductivité est dépendante de la température de même que processus de biodégradation carbonée (THOMAS, 1995).

1.4.1.3. Conductivité électrique

La mesure de conductivité électrique, paramètre non spécifique, est probablement l’une des plus simples et des plus importantes pour le contrôle de la qualité des eaux usées (THOMAS, 1995).

La conductivité d’une eau varie selon son degré d’impureté, ainsi plus la concentration ionique des sels dissous est grande plus la conductivité est grande (BARIKA et SENOUSSI, 2005).

1.4.1.4. Potentiel hydrogène pH

Le pH indique le degré d’acidité ou d’alcalinité présents dans l’eau. L’importance de la mesure du pH, bien que très répandue, est en fait limitée aux effluents industriels. Compte tenu du pouvoir tampon élevé d’une eau résiduaire urbaine et de sa valeur la plupart du temps voisine de la neutralité pour les eaux industrielles ; la mesure du pH accompagne toujours une installation de neutralisation permettant dans le même temps le contrôle la valeur de pH avant rejet dans le réseau d’assainissement (THOMAS, 1995).
1.4.1.5. Demande chimique en oxygène DCO

La DCO indique la quantité d'oxygène consommée par oxydation chimique de la totalité des matières organiques biodégradables et non biodégradables, et mesuré en mg d'O$_2$/l. Elle s'exprime par la quantité d'oxygène fournie par le dichromate de potassium et nécessaire à l’oxydation des substances organiques (protéines, glucides, lipides, etc.) (FRANK, 2002).

1.4.1.6. Demande biologique en oxygène DBO

La demande biologique en oxygène est la quantité d’oxygène nécessaire aux micro-organismes en mg/l dans l’eau usée pour oxyder les matières organiques biodégradables.

On définit la DBO$_5$ comme étant la quantité d'oxygène consommée après 5 jours d’incubation à 20 °C et à l’obscurité (DEGREMONT, 2005).

1.4.1.7. Oxygène dissous

L’oxygène dissous est un composé essentiel de l’eau car il permet la vie de la faune et il conditionne les réactions biologiques qui ont lieu dans les écosystèmes aquatiques. Dans le domaine de l’épuration, il est indispensable pour la dégradation des matières polluantes qui se fait principalement en aérobiose. Sa concentration est très faible et le plus souvent, proche de zéro dans les eaux résiduaires urbaines brutes, de fait de concentration importante en composés réducteurs et de l’activité des microorganismes présents. La solubilité de l’oxygène dans l’eau dépend de différents facteurs, dont la température, la pression et la force ionique du milieu (FRANK, 2002).

1.4.1.8. Les autres éléments

1.4.1.8.1. Azote

C’est un élément qui se trouve sous forme ammoniacale ou organique ou inorganique (ammoniaque, nitrate, nitrite) ; il constitue la majeure partie de l’azote total. L'azote contenu dans les eaux résiduaires domestiques a essentiellement une origine urinaire. On estime à environ 13g/jour la quantité d'azote rejetée par un être humain adulte (CHOCAT, 1984).

A l’entrée de station d’épuration, l’azote est présent sous forme réduite (sous forme organique et sous forme d’ion ammonium N-NH_4), les formes oxydées de l’azote (NO$_2^-$ et
NO₃⁻) pourront apparaître au cours du traitement biologique aérobie au niveau de la station d'épuration (BENHEDID et HARROUZ, 2011).

1.4.1.8.2. Phosphore

Le phosphore est présent dans les eaux usées soit :

- Sous forme organique : phospholipides, phosphoprotéines.
- Sous forme minérale : les orthophosphates, les polyphosphates (BADIA-GONDARD, 2003).

Ces différents composés se trouvent soit à l'état dissous dans la phase liquide, soit fixés sur les matières en suspension et colloïdales. L'apport de phosphore par les réseaux d'égouts varie fortement avec les usages alimentaires et domestiques (dét chargents). La quantité de phosphore rejetée se situe entre 2 et 5g/habitant/jour (DALI et ZOUAOU, 2007).

1.4.1.8.3. Métaux lourds

Les métaux lourds se trouvent dans les eaux usées urbaines à l'état de trace. Des concentrations élevées sont en général révélatrices d'un rejet industriel, sans aucun doute. Leur présence, est nuisible pour l'activité des micro-organismes, donc perturbe le processus d'épuration biologique (TCHIOMOGO, 2001).

1.4.1.8.4. Coloration

La coloration d'une eau est très souvent synonyme de la présence des composés dissous et corrélativement la présence du soluté induit une coloration qui ne se limite pas au seul domaine de visible (BAOUIA et HABBAZ, 2006).

1.4.1.8.5. Turbidité

C'est la réduction de la transparence d'un liquide due à la présence de matières non dissoutes. Elle est causée dans les eaux, par la présence de matières en suspension (MES) fines, comme l'argile, les limons, les grains de silice et les microorganismes. Une faible part de la turbidité peut être due également à la présence de matières colloïdales d'origine organique ou minérale (FRANK, 2002).
1.4.1.8.6. Odeur

L’eau d’égout fraîche à une odeur fade qui n’est pas désagréable, par contre en état de fermentation, elle dégage une odeur nauséabonde (LADJEL, 2006).

1.4.2. Les paramètres microbiologiques

Les micro-organismes qui se trouvent dans l’eau usée sont à l’origine du traitement biologique. Ils comprennent, par ordre croissant de taille :

- Les virus (ex.: Virus de l’hépatite A).
- Les bactéries (ex.: Salmonella sp.).
- Les protozoaires (ex.: Entamoeba histolytica).
- Les helminthes (ex.: Ascaris lumbricoides).
Conclusion

La réutilisation des eaux traitées pour l’arrosage des espèces forestières pourrait présenter une solution intéressante sur le plan économique et tout à fait envisageable dans le contexte saharien, compte tenu du fait que toutes les ressources en eau destinées aux besoins humains sont d’origine fossile, alors que les ressources en eau de seconde main sont abondamment disponibles (Continental Intercalaire et Complexe Terminal).

Dans le contexte actuel de la cuvette de Ouargla, la réutilisation des eaux usées traitées pour l’irrigation constitue une opportunité intéressante pour préserver les ressources en eaux disponibles au profit des générations futures.

Ce travail préliminaire présente le résultat de 65 jours d’investigation sur les possibilités de réutilisation des eaux épurées provenant de la station de lagunage aéré de la ville de Ouargla.

Les premiers résultats du suivi biométrique des deux espèces expérimentées, arrosées avec les eaux épurées par lagunage (*Acacia farnesiana* et *Albizia julibrissin*) sont globalement encourageants. Nous remarquons cependant que nous obtenons de meilleurs résultats avec *Albizia julibrissin*. Pour la hauteur, les plants de cette espèce connaissent une croissance de 1,88 cm entre le début et la fin de l’expérience, ce qui est pratiquement identique à la croissance obtenue en utilisant des eaux de forage. Pour le diamètre, nous obtenons également des croissances pratiquement identiques lorsqu’on utilise les eaux traitées ou les eaux de forage (0,5 mm).

Cette expérience mérite d’être poursuivie et complétée pendant de nombreuses années afin d’aboutir aux meilleures conditions possibles permettant d’optimiser l’arrosage des deux espèces forestières par les eaux traitées par la station de lagunage de Ouargla.
Recommandations préliminaires pour l’arrosage des espèces forestières avec les eaux épurées

Les résultats de notre expérience et observations préliminaires ont en mis en évidence certaines recommandations dont la prise en compte, aussi bien sur le plan expérimental qu’opérationnel, nous paraît importante. L’essentiel de ces recommandations est résumé ci-dessous :

- Prendre toujours en considération la robustesse des plantes à cultiver sur le terrain.
- Après la plantation, il est nécessaire de prendre toutes les précautions nécessaires pour bien protéger les plantes issues de la pépinière, en particulier dans les régions sahariennes caractérisées par de très fortes températures et par des vents de sable fréquents.
- Ajuster les conditions favorable à la survie et à la croissance des plantes telles que : la quantité des eaux d’irrigation par rapport au besoin de chaque plante, le mode et temps d’irrigation, les besoins en fumiers………etc.
- Qualité du sol et des eaux d’irrigation.

Il est important de signaler que la durée de l’expérience a été très courte (seulement 2 mois). Cette période malgré qu’elle nous a permis d’obtenir quelques résultats préliminaires doit être prolongée afin de poursuivre les recherches sur des périodes plus importantes, notamment dans le cadre de préparation de mémoire de magister.
Remerciements

Avant tout, nous remercions Dieu qui nous a accordé la patience, le courage et les moyens afin de pouvoir accomplir ce modeste travail.
A nos parents pour leur patience, d’être à nos cotés tout le temps, nous soutenir, protéger, par leur prière.
Nous tenons à remercier profondément tous ceux qui ont Participé de près ou de loin à la réalisation de ce travail et Particulièrement :
Notre Promoteur M’IDDER MOHAMMED TAHAR Pour son suivi, sa patience, ses conseils de ce mémoire.
Notre Co-promoteur M’IDDER ABDELHAK M’MENSOUS MOHAMMED M’AZIB SALIM
Les collègues : M’NEGAIS HAMZA M’dé BOUKHALFA AMEL M’dé KAFIHADIDJA NEJLA
Tout le personnel de la station d’épuration de Ouargla, et en Particulier :
M’OURAHMOUNE HALIM M’CHETTOUH ABDESSLAME M’KATEB ZOHIR
Nous remercions également le président et les membres de jury pour avoir accepté de juger ce travail.
Nous remercions enfin tous les enseignants et les étudiants de la 1ère promotion de 2ème MASTER Sciences de l’environnement.

MERCI
III.1. Définition de la réutilisation des eaux usées épurées

La réutilisation de l’eau consiste en l’utilisation d’eau traitée à des fins utiles, notamment l’irrigation agricole et le refroidissement dans le secteur industriel. L’eau récupérée est un effluent traité pour obtenir une qualité conforme à un usage précis.

La réutilisation directe fait référence à un système de réutilisation dans lequel l’eau récupérée est transportée jusqu’aux points où elle est réutilisée.

La réutilisation indirecte concerne l’évacuation dans des eaux réceptrices (eaux de surface ou nappe souterraine) d’un effluent qui est ensuite assimilé puis prélevé en aval, ce qui ne correspond pas à une réutilisation directe planifiée de l’eau (MEKHALIF, 2009).

III.2. Domaines de réutilisation des eaux épurées

Théoriquement, on peut réutiliser les effluents épurés pour de nombreux usages :

III.2.1. Agriculture irriguée

La quantité des eaux usées rejetée incite les agriculteurs à utiliser cette source d'eau. Aussi, la richesse en éléments fertilisants tel que l'azote, le phosphore et le potassium, nécessaires pour le développement des plantes et aussi pour la fertilisation du sol, permet d'économiser l'achat des engrais et d'augmenter la production agricole (MARA et CAIRNCROSS, 1989). Ce type de réutilisation se heurte cependant à la qualité microbiologique des eaux usées qui doit satisfaire un certain seuil admissible prescrit par les différentes normes de réutilisation.

Tableau N° 01 : Recommandations microbiologiques révisées de l'OMS (1989) pour la réutilisation des eaux usées avant utilisation en agriculture (BONDON et PIETRASANTA, 1994).

<table>
<thead>
<tr>
<th>DIRECTIVE DE L'OMS</th>
<th>Condition de réutilisation</th>
<th>Groupe exposé</th>
<th>Nématodes intestinaux</th>
<th>Coliformes fécaux</th>
<th>Coliformes totaux</th>
<th>Qualité de l'eau potable</th>
<th>Afrique du Sud</th>
<th>Autres pays du Moyen-Orient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catégorie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Irrigation de cultures destinées à être consommées crues, terrains de sports et jardins publics</td>
<td>Ouvriers agricoles Consommateurs Public</td>
<td>≤1/l</td>
<td>≤1000/100 ml</td>
<td>≤2.2/100 ml</td>
<td>Qualité de l'eau potable</td>
<td>Afrique du Sud</td>
<td>Autres pays du Moyen-Orient</td>
</tr>
<tr>
<td>B</td>
<td>Irrigation des cultures céréalières, industrielles et fourragères</td>
<td>Ouvriers agricoles</td>
<td>≤1/l</td>
<td>Aucune norme n’est recommandée</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Irrigation localisée des cultures B, si les ouvriers ne sont pas exposés</td>
<td>Néant</td>
<td>Sans objet</td>
<td>Sans objet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14
L’OMS a publié en 2006 de nouvelles lignes directrices sur l’utilisation des eaux usées, qui tiennent compte des situations locales et privilégient les moyens à prendre pour réduire au minimum les risques sanitaires posés par ces eaux.

Les modifications ont essentiellement porté sur la norme “œufs d’helminthes” qui pour certaines catégories est passée de 1 à 0,1 œuf L\(^{-1}\). Ces recommandations sont destinées à une utilisation internationale et sont donc adaptées aux pays en voie de développement. Elles représentent la limite au-delà de laquelle la santé publique n’est plus assurée (OMS, 2006).

III.2.2. Réutilisation industrielle

La réutilisation industrielle des eaux usées et le recyclage interne sont désormais une réalité technique et économique. Pour les pays industrialisés, l'eau recyclée fournit 85% des besoins globaux en eau. Les centrales thermiques et nucléaires (eau de refroidissement) sont parmi les secteurs qui utilisent les eaux usées en grande quantité. La qualité de l'eau réutilisée dépend de l'industrie ou de la production industrielle (ECOSSE, 2001).

III.2.3. Réutilisation en zone urbaine

En zone urbaine et périurbaine, la réutilisation des eaux usées est une source importante. Les usages les plus courants sont l'irrigation d'espaces verts (parcs, golfs, terrains sportifs), l'aménagement paysager (cascades, fontaines, plans d'eau), le lavage des rues ou des véhicules et la protection contre l'incendie. Une autre application importante est le recyclage en immeuble (ECOSSE, 2001).

III.2.4. Recharge des nappes

La principale motivation concernant la recharge de nappes est la dégradation de leur qualité environnementale et/ou la diminution de leur réserve en eau. Ce mode de réutilisation a lieu essentiellement dans des zones arides qui doivent faire face à des problèmes d’assèchement de nappes, ou dans des zones côtières où les nappes sont envahies par l’eau de mer (BOUTELLI et MENASRIA, 2008).
III.2.5. Production d’eau potable

Le progrès technologique du métier de l’eau permet de produire une eau de très bonne qualité, même à partir des eaux usées. De nombreuses études permettent l’utilisation des eaux usées d’une manière correcte, si les procédures suivies dans le traitement peuvent éliminer tous les éléments pathogènes (LAZAROVA, 1998).

III.2.6. Rejets dans un milieu récepteur

En termes d’épuration, les eaux traitées sont rejetées dans l’environnement, généralement dans un milieu naturel récepteur précis : rivière, lac, mer, sebkha, chott, etc. Il est institué des contrôles périodiques et inopinés des caractéristiques physiques, chimiques et biologiques des rejets (THOMAS, 1995).

Tableau N° 02: Normes physico-chimiques de rejets de l’OMS appliquées en Algérie (LADJEL, 2006).

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>Normes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T° C°</td>
<td>30</td>
</tr>
<tr>
<td>pH</td>
<td>6.5-8.5</td>
</tr>
<tr>
<td>O2 mg/l</td>
<td>5</td>
</tr>
<tr>
<td>DBO₅ mg/l</td>
<td>30</td>
</tr>
<tr>
<td>DCO mg/l</td>
<td>90</td>
</tr>
<tr>
<td>MES mg/l</td>
<td>30</td>
</tr>
<tr>
<td>Zinc mg/l</td>
<td>2</td>
</tr>
<tr>
<td>Chrome mg/l</td>
<td>0.1</td>
</tr>
<tr>
<td>Azote total mg/l</td>
<td>50</td>
</tr>
<tr>
<td>Phosphates mg/l</td>
<td>2</td>
</tr>
<tr>
<td>Hydrocarbures mg/l</td>
<td>10</td>
</tr>
<tr>
<td>Détectants mg/l</td>
<td>1</td>
</tr>
<tr>
<td>Huiles et graisses mg/l</td>
<td>20</td>
</tr>
</tbody>
</table>
III.2.7. Réutilisation en aquaculture et pisciculture

L’utilisation des eaux usées dans les étangs piscicoles est aussi ancienne que l’aquaculture. Cette utilisation nécessite un traitement minimum indispensable (lagunage, épuration classique, prédilection, dilution simultanée). Une deuxième condition, non moins importante, est la sélection exclusive des eaux usées domestiques et rurale afin d’éviter la présence de métaux lourds et autre substances toxiques des rejets industriels.

Dans un milieu enrichi, la production piscicole peut être doublée et même triplée sans nourriture additionnelle (SCHMIDT, 1981).

➢ Expérience de réutilisation des eaux épurées pour l’élevage de tilapia
 (Oreochromis niloticus) dans le bassin de finition de la STEP de Ouargla

Les expériences ont été réalisées durant deux campagnes pour d’élevage de tilapia dans les eaux usées épurées, la première du 16/03/2011 au 14/04/2011 (23 individus) et la seconde le 17/04/2011 au 26/05/2011 (30 individus). Le but a été d’évaluer les possibilités de valorisation des effluents traités dans le domaine piscicole qui peut présenter un potentiel économique intéressant en régions sahariennes (BETTAHAR et HAMDI, 2011).

III.2.8. Réutilisation des eaux épurées pour l'irrigation

Les avantages et les contraintes de la réutilisation des eaux usées épurées d’après (CIRESS, 2010) :

➢ Principaux avantages
 - Réduit la demande pour les eaux conventionnelles.
 - Evite des investissements coûteux pour la capture et l’entreposage des eaux de ruissellement.
 - Augmentation la production agricole.
 - Réduit le besoin en fertilisation commerciaux.
 - Améliore la qualité des eaux usées rejetées (cours d’eau, lacs, sebkha, etc.).

➢ Principaux contraintes
 - Propriétés souvent complexes des eaux usées.
 - Coût quelques fois élevé pour le traitement des eaux usées.
 - Certaines cultures plus difficilement vendues sur le marché, problème d’acceptabilité sociale.
- La qualité des eaux recyclées peut avoir un impact négatif sur les sols et les cultures.
- Problèmes de santé humaine et animale associés à une mauvaise utilisation des eaux usées ou recyclées.

➢ Exemples

III.2.8.1. Au niveau mondial

.getBounds() Réutilisation des eaux usées épurées pour l’irrigation du gazon des golfs à Agadir, Maroc.

Cette expérience concerne la réutilisation des eaux usées épurées de la STEP de M’zar pour l’irrigation des gazons des golfs.

Les résultats préliminaires obtenus, qui concernent le suivi pendant les 21 premiers jours, montrent que l’irrigation par les eaux usées épurées n’affecte pas le taux de germination des graines et possède un effet positif sur la poussée du gazon : tallage et évolution de la longueur des feuilles et ce en comparaison avec l’irrigation par une eau conventionnelle (Eau de la nappe).

Trois variétés de gazon testées confirment une bonne adaptation à la qualité des eaux épurées malgré leur degré de salinité élevé (MOUHANNI et al, 2008).

.getBounds() Valorisation des eaux usées épurées pour la production du bois - énergie et du fourrage au Niger

L’essai a été réalisé sur le site expérimental de la faculté des sciences de l’université Abdou Moumouni de Niamey.

L’objectif de cette expérimentation était d’étudier les avantages de l’utilisation des eaux épurées pour la production du bois de chauffe et du fourrage au Sahel à partir d’une technique efficace d’épuration, une méthode fiable d’arrosage et des espèces végétales à croissance rapide ; Il s’agit d’Acacia angustissima, d’Acacia crassicarpa et de Gliricidia sepium.

L’utilisation des eaux usées traitées par lagunage pour l’irrigation des plantes forestières : *Leptadenia hastata* et *Moringa oleifera* au Niger

L’expérimentation a été de trois mois (Juin à Août 2001) et s’est déroulée à la station pilote de traitement des eaux usées par lagunage de l’université de Niamey. Cette étude a été effectuée dans le but de comparer les rendements des deux espèces lorsqu’elles sont arrosées par les eaux usées urbaines traitées et par les eaux claires du robinet.

L’expérience a montré que les plantes arrosées avec les eaux usées urbaines épurées produisent une biomasse beaucoup plus importante que les plantes ayant reçues les eaux claires de la ville. Dans le cas de *Leptadenia hastata*, les plantes ayant reçu les eaux épurées produisent jusqu’à 5 à 6 fois plus de biomasse que celles qui sont arrosées avec les eaux claires de la ville. Dans le cas du *Moringa oleifera*, l’utilisation des eaux épurées permet, dans le contexte local, de produire 4,5 tonnes de matière fraîche par hectare et par mois (IDDER et al, 2006).

L’irrigation avec des eaux usées épurées des plantations forestières au Yémen

Les principales espèces utilisées pour les brise-vent et les plantations de bord de route sont *Acacia cyanophylla*, *Casuarina cunninghamiana* et l'*Eucalyptus camaldulensis*. La première plantation irriguée avec les eaux usées épurées a été établie à Aden sur 7 ha comme une partie d’une ceinture verte autour de la ville.

A Al-Hodeyda aussi, un projet a commencé en Avril 1995 pour établir une ceinture verte autour d'Al Hodeyda - ville le long de 7 km d'Al-Hodeyda - route Jizan et le long de 7 kms d'Al-Hodeyda - route Sana'a à l'est. La longueur totale de la ceinture est approximativement de 14 km et la largeur est de 100 mètres et les espèces utilisées sont les mêmes que celles citées précédemment avec l'addition de *Conocarpus lancifolia* (FAO, 2002).

III.2.8.2. Au niveau national

L’utilisation des eaux d’une station d’épuration de Constantine pour l’irrigation des essences forestières urbaines

L’objectif de ce projet était de voir la possibilité d’utilisation des eaux usées brutes et traitées de la station d’épuration d’Ibn Ziad pour l’irrigation des essences forestières urbaines; les résultats des essais menés sur trois essences forestières urbaines (*Schinus molle, Acacia cyanophylla, Eucalyptus gomphocephala*) sur sol, dans un milieu à conditions semi contrôlées.
ont montré que l'irrigation avec des eaux usées traitées permettent une croissance et un développement plus rapide des différentes essences et peuvent être utilisées sans danger pour l'irrigation des plants (DJEDDI, 2007).

III.2.8.3. Au niveau régional

☞ La réutilisation des eaux usées traitées dans la cuvette de Ouargla

➢ L’irrigation de *Casuarinas sp.*

Photo N°01 : Plantes de *Casuarinas sp.* dans la S.T.E.P de Ouargla irriguées avec les eaux épurées.

➢ L’irrigation des plantes ornementales

Cette expérience avait consisté à l’arrosoir des plantes ornementales au niveau de la S.T.E.P présentées ci-dessous (photo 02).

Photo N°02 : Plantes ornementales au niveau de la S.T.E.P

Le système d’irrigation utilisé est le goutte à goutte avec une fréquence de 3 fois par semaine en l’hiver et chaque jour en été. Cette expérience a donné de bon résultats et des rendements satisfaits (NEKLHA et REMOUNE, 2011).
➢ Irrigation des palmiers dattiers de la S.T.E.P

Elle a concerné l’irrigation de 4000 Djebars plantés, appartenant à 4 types de palmiers différents. Cette expérience a donné un taux de survie de 80% (NEKHLA et REMOUNE, 2011).

➢ Irrigation des oliviers de la S.T.E.P

108 plants d’olivier ont été plantés durant le mois de Mars 2013. Les premiers résultats jusqu’au mois de Mai ont donnés un taux de survie de 70% (S.T.E.P. Ouargla, 2013).

III.3. Paramètres à prendre en considération pour la réutilisation des eaux traitées

Ces paramètres font l’objet, dans le cadre d’un projet de réutilisation des eaux usées traitées, d’une attention particulière puisqu’ils représentent un risque pour la santé humaine, animale et pour l’environnement.

III.3.1. Microorganismes contenus dans les eaux usées

a. Virus

Leur concentration dans les eaux usées urbaines est comprise entre 10³ et 10⁴ particules par litre. Leur isolement et leur dénombrement dans les eaux usées sont difficiles, ce qui conduit vraisemblablement à une sous-estimation de leur nombre réel (FABY, 1997).

Les virus entériques sont ceux qui se multiplient dans le trajet intestinal. Parmi les virus entériques humains les plus importants on peut il citer les entérovirus, les rotavirus, les adénovirus et le virus de l'Hépatite A qui ont une durée de vie d'environ 3 mois (DALI et ZOUAOUI, 2007).

b. Bactéries

Les eaux usées urbaines contiennent environ 10⁷ à 10⁸ bactéries/l dont 10⁶ entérocoques et entérobactéries, 10⁴ à 10⁵ streptocoques fécaux et 10³ à 10⁵ clostridium. La majorité de ces organismes ne présentent pas un danger pour la santé et la concentration en bactéries pathogènes peut atteindre l'ordre de 10⁴/l (FABY, 1997).
La voie de contamination majoritaire est l’ingestion. Les bactéries pathogènes d’origine hydrique sont responsables de la mort de 3 à 10 millions de personnes par an dans le monde (MIQUEL, 2003).

c. Protozoaires

Certains protozoaires adoptent au cours de leur cycle de vie une forme de résistance, appelée kyste. Cette forme peut résister généralement aux procédés de traitements des eaux usées (BOUTIN et al, 2009).

d. Helminthes

Dans les eaux usées urbaines, le nombre d’œufs d’helminthes peut être évalué entre 10 et 10^3/l (ASANO, 1998). Beaucoup d’helminthes ont des cycles de vie complexes comprenant un passage obligé par un hôte intermédiaire. Le stade infectieux de certains helminthes est l’organisme adulte ou la larve, alors que pour d’autres, ce sont les œufs.

Les œufs et les larves sont résistants dans l’environnement et le risque lié à leur présence est à considérer pour le traitement et la réutilisation des eaux résiduaires (BOUTIN et al, 2009).
Tableau N°03 : Quelques micro-organismes pathogènes rencontrés dans les eaux usées
(BOUTELLI et MENASRIA, 2008).

<table>
<thead>
<tr>
<th>Organisme</th>
<th>Symptômes, maladie</th>
<th>Voies de contamination principales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virus de l’hépatite A</td>
<td>Hépatite A</td>
<td>Ingestion</td>
</tr>
<tr>
<td>Virus de l’hépatite E</td>
<td>Hépatite E</td>
<td>Ingestion</td>
</tr>
<tr>
<td>Coronavirus</td>
<td>Vomissement, diarrhée</td>
<td>Ingestion/Inhalation</td>
</tr>
<tr>
<td>Bactéries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonella</td>
<td>Typhoïde, paratyphoïde, salmonelle</td>
<td>Ingestion</td>
</tr>
<tr>
<td>Mycobacterium</td>
<td>Tuberculose</td>
<td>Inhalation</td>
</tr>
<tr>
<td>E. coli</td>
<td>Gastro-entérité</td>
<td>Ingestion</td>
</tr>
<tr>
<td>Leptospira spp.</td>
<td>Leptospirose</td>
<td>Ingestion/Inhalation/ cutanée</td>
</tr>
<tr>
<td>Protozoaires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td>Dysenterie amibienne</td>
<td>Ingestion</td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>Giardias</td>
<td>Ingestion</td>
</tr>
<tr>
<td>Toxoplasma gondi</td>
<td>Toxoplasmose : Ganglion, faible fièvre</td>
<td>Inhalation/ingestion</td>
</tr>
<tr>
<td>Helminthes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascaris umbricoides</td>
<td>Ascaridiase : diarrhée, Troubles nerveux</td>
<td>Ingestion</td>
</tr>
<tr>
<td>Ancylostoma spp.</td>
<td>Anémié</td>
<td>Ingestion/cutanée</td>
</tr>
<tr>
<td>Trichuis spp.</td>
<td>Diarrhée, douleur Abdominale</td>
<td>Ingestion</td>
</tr>
</tbody>
</table>

III.3.2. Éléments traces

Parmi les éléments traces, on distingue ceux dit minéraux (ou inorganiques) tels que les éléments traces métalliques et ceux dit organiques tels que les pesticides par exemple.

III.3.2.1. Micropolluants inorganiques

Les eaux usées d’origine urbaine peuvent contenir des éléments minéraux (toxiques ou non) et notamment des éléments traces métalliques.

Ces micropolluants proviennent essentiellement : des produits consommés par la population, de la corrosion des matériaux utilisés dans les réseaux de distribution et d’assainissement, des eaux pluviales dans le cas de réseau unitaire et d’activités de service (santé, automobile, …) et de rejets industriels raccordés au réseau (BOUTIN et al, 2009).
Devenir des micropolluants minéraux

L’épandage ou l’irrigation d’eau usée traitée vont contribuer à l’enrichissement des sols en micropolluants minéraux. Certains de ces éléments traces peuvent être reconnus nécessaires au développement des végétaux (en très faibles quantités) et d’autres beaucoup moins. L’impact négatif de cet apport peut se présenter sous plusieurs aspects :
- atteinte à l’activité microbiologique du sol (pouvant entraîner un ralentissement de l’humidification de la matière organique, du métabolisme de l’azote, …).
- phytotoxicité (malformations, chlorose, retard voire absence de croissance, …).
- zootoxicité (accumulation des éléments traces métalliques dans les tissus d’animaux).

Le comportement de chaque métal dépend du type de liaisons avec les constituants du sol et de son aptitude à être absorbé par la végétation, variable selon les espèces végétales.

L’échelle de sensibilité des végétaux à l’accumulation des métaux est la suivante (par ordre décroissant) : champignons, cultures légumières, betterave à sucre, pommes de terre, céréales et cultures industrielles, graminées fourragères. De plus, l’accumulation n’est pas réalisée de manière homogène sur toute la plante et, en général, les teneurs décroissent dans l’ordre suivant : racine, tige, feuille, fruit (BOUTIN et al, 2009).

![Figure 02: Classification des métaux en fonction de leur danger et de leur intérêt agronomique (BAUMONT et al, 2004).](image)

III.3.2.2. Micropolluants organiques

Les micropolluants organiques identifiés dans les eaux usées proviennent, essentiellement de l’utilisation domestique de détergents, pesticides, solvants et également des eaux pluviales. Ils peuvent aussi provenir de rejets industriels. Parmi les micropolluants organiques les plus connus, on peut citer les PCB (Poly Chloro Bipényles), les HAP
(Hydrocarbures Aromatiques Polycycliques), les OHV (Organo Halogénés Volatils) ou les produits phytosanitaires (pesticides par exemple) (BOUTIN et al, 2009).

➢ Devenir des micropolluants organiques

Dans le sol, ces micropolluants restent liés à la matière organique ou adsorbés sur les particules du sol. Cependant, quelques composés ioniques (pesticides organochlorés, solvants chlorés) peuvent être entraînés en profondeur.

En cas d’usage à des fins agricoles, il semble que les plantes soient susceptibles d’absorber certains composés organiques mais une amélioration des connaissances à ce sujet est requise, tout particulièrement afin d’évaluer l’effet de ces composés absorbés (BOUTIN et al, 2009).

III.3.3. Salinité

Le principal critère d’évaluation de la qualité d’une eau naturelle dans la perspective d’un projet d’irrigation est sa concentration totale en sels solubles. Les conséquences d’une salinité excessive de l’eau d’irrigation se présentent sous 2 catégories :
- Les dommages vis-à-vis des sols et donc, indirectement, vis-à-vis des rendements culturaux.
- Et les dommages causés aux cultures.

Parmi les éléments entrants en jeu dans la salinité des eaux usées réutilisées, on peut citer le sodium et le chlore qui sont responsables, en grande partie, de la salinisation des sols et le bore dans une moindre mesure (FABY, 1997).

➢ Salinisation

Les plantes prélevent l’eau du sol en y abandonnant une large part des sels apportés par l’eau d’arrosage ce qui conduit à augmenter la salinité de l’eau du sol. Les conséquences de l’évaporation sont les mêmes. La pression osmotique de l’eau du sol augmentant avec sa concentration en sels dissous, la plante consacre alors l’essentiel de son énergie non pas à se développer, mais à ajuster la concentration en sels de son tissu végétal de manière à pouvoir extraire du sol l’eau qui lui est nécessaire (BOUTIN et al, 2009).
III.3.4. Chlore et sodium

La plupart des arbres et autres plantes ligneuses pérennes sont sensibles au chlore à faible dose, alors que la plupart des cultures annuelles le sont moins. Les effets toxiques apparaissent beaucoup plus facilement quand les sels sont apportés directement sur les feuilles lors des irrigations par aspersion. C’est particulièrement vrai pour le chlore et le sodium.

Quand le résiduel en chlore est trop élevé au moment de l’irrigation, les cultures peuvent souffrir si elles sont arrosées par aspersion. Une concentration en chlore résiduel inférieure à 1 mg/l est sans danger pour le feuillage, mais une concentration supérieure à 5 mg/l serait dommageable (BOUTIN et al, 2009).

- Sodisation

Une grande quantité d’ions sodium dans l’eau affecte la perméabilité des sols et pose des problèmes d’infiltration. Le phénomène d’accumulation de sodium dans les sols s’appelle la sodisation. Ceci est dû au fait que le sodium présent dans le sol en forme échangeable remplace les ions calcium et magnésium adsorbés sur les argiles de sol et cause la dispersion des particules dans le sol. Cette dispersion a comme conséquence l’altération des agrégats des sols. Le sol devient alors dur et compact (lorsqu’il est sec) réduisant ainsi les vitesses d’infiltration de l’eau et d’air, affectant ainsi sa structure. Ce problème est également relié à plusieurs facteurs tels que le taux de salinité et le type de sol. Par exemple, les sols sableux ne subiront que peu de dommage en comparaison aux plus lourds quand ils sont irrigués avec de l’eau à haut Rapport d’Adsorption du Sodium (RAS).

Le SAR défini comme égal à Na⁺/√(Ca++ + Mg++)/2, (Na⁺, Ca++ et Mg++ étant exprimés en meq/l) (FABY, 1997).

III.3.5. Autres paramètres

III.3.5.1. Substances nutritives

♢ Azote

L’usage d’eaux usées en irrigation peut faire craindre un excès d’apports azotés. Cet excès se réfère d’une part aux tolérances de la végétation cultivée et d’autre part, aux risques de pollution des nappes phréatiques sous-jacentes. En effet, dans certains cas défavorables, un apport d’azote excédentaire par rapport aux besoins des cultures, peut
provoquer dans un sol très perméable la contamination des eaux souterraines. Ceci impose des contraintes qu'un projet de réutilisation d'effluents urbains doit prendre en compte.

L'azote en quantité excessive peut également entraîner des effets néfastes sur la production tel qu'un retard dans la maturation de certaines cultures, abricots, agrumes, avocats, vigne par exemple, altérer leur qualité, comme par exemple réduire la teneur en sucre des fruits ou des betteraves, accentuer la sensibilité des cultures aux maladies, la tendance à la verse pour les céréales, limiter le développement des jeunes racines (BOUTIN et al, 2009).

♦ Phosphore

La concentration en phosphore dans les eaux usées est habituellement trop faible pour avoir un impact sur le rendement. Dans les rares cas d’apports en excès, le phosphore est alors pour l’essentiel retenu dans le sol par des réactions d’adsorption et de précipitation ; cette rétention est d’autant plus effective que le sol contient des oxydes de fer, d'aluminium ou du calcium en quantités importantes (BOUTIN et al, 2009).

♦ Potassium

La concentration en potassium dans les effluents secondaires varie de 10 à 30 mg/l (12 à 36 mg/l de K₂O) et permet donc de répondre partiellement aux besoins. Il faut noter cependant que, s’il existe, un excès de fertilisation potassique conduit à une fixation éventuelle du potassium, à un état très difficilement échangeable et/ou à une augmentation des pertes par drainage en sols légers (BOUTIN et al, 2009).

♦ Matières en suspension et matière organique

Une présence excessive de matières en suspension peut entraîner des difficultés de transport et de distribution des effluents ainsi que le bouchage des systèmes d'irrigation.

La présence de matière organique dans les eaux usées ne constitue pas, sauf cas très particulier, un obstacle à la réutilisation de ces eaux. Bien au contraire, elle contribue à la fertilité des sols. Le maintien d’une concentration importante en matière organique dans les eaux usées gêne considérablement l’efficacité des traitements destinés à éliminer les germes pathogènes (BOUTIN et al, 2009).
III.4. Risques de réutilisation des eaux usées épurées

<table>
<thead>
<tr>
<th>Secteur ou élément impacté</th>
<th>Risques</th>
<th>Aléas</th>
<th>Sensibilité (exposition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santé</td>
<td>Risques microbiologiques : choléra, infections, diarrhées, allergies,</td>
<td>Pathogènes Composés toxiques Polluants émergents, perturbateurs endocriniens</td>
<td>Exposition (public, usagers, Consommateurs)</td>
</tr>
<tr>
<td></td>
<td>Risque chimique : intoxication, cancers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dégradation qualité des produits agroalimentaires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environnement</td>
<td>Eutrophisation ; pollution de nappes ; odeurs ; impacts des coproduits de traitements (concentras membranaires ; boues) Emissions de CO₂ (Consommation d’énergie pour traitement)</td>
<td>Azote, phosphore, composés toxiques, métaux lourds</td>
<td>Profondeur des nappes, sensibilité des milieux (zones côtières)</td>
</tr>
<tr>
<td>Sol et plante</td>
<td>Toxicité des plantes (sels) Salinisation et dégradation des sols (eau salée) Accumulation de polluants dans les sols</td>
<td>Salinité ; Métaux lourds</td>
<td>Sensibilité des cultures ; Fragilité des sols</td>
</tr>
<tr>
<td>Perception</td>
<td>Impact visuel (stockage) ; Odeurs ; rejets sociaux (méconnaissance ; peurs) ; tension si expropriation</td>
<td>Gène</td>
<td>Niveau de perception ; propension en changement</td>
</tr>
<tr>
<td>Distribution ; équipement</td>
<td>Développement d’algues ; corrosion; bouchage</td>
<td>Matière organique ; azote ; phosphore ; matière en suspension</td>
<td>Type de système d’irrigation</td>
</tr>
</tbody>
</table>
V.1. Présentation de la région d'étude

V.1.1. Situation géographique

La wilaya d’Ouargla est située au Sud-est de l’Algérie couvrant une superficie de 163,230 Km². Elle est limitée :

✓ AU NORD : par les wilayas de Djelfa, d'El-Oued.
✓ A L'EST : par les Tunisie et El-Oued.
✓ AU SUD : par les wilayas de Tamanrasset et d'Illizi.
✓ A L'OUEST : par la wilaya de Ghardaïa.

La ville de Ouargla est située au fond de la vallée Nord de Oued Mya, à une altitude moyenne de 157 m, et aux coordonnées géographique 5° 20 ’ Est de longitude et 31° 58 ’ Nord de latitude (ROUVILLOIS-BRIGOL, 1975).

Figure N° 05: Position géographique de la région de Ouargla (S.T.E.P, 2009).
V.1.2. Climatologie

La région de Ouargla se caractérise comme l’ensemble du bas Sahara par un climat de type désertique, dont les amplitudes thermique sont importantes et par une pluviométrique très faible, il est à souligner que ce type de climat se distingue par une forte insolation et une luminosité, dont la moyenne annuelle peut atteindre les 3000 heures (KHADRAOUI, 2004).

<table>
<thead>
<tr>
<th>Janvier</th>
<th>Février</th>
<th>Mars</th>
<th>Avril</th>
<th>Mai</th>
<th>Juin</th>
<th>Juillet</th>
<th>Août</th>
<th>Septembre</th>
<th>Octobre</th>
<th>Novembre</th>
<th>Décembre</th>
<th>Moyenne/ Cumul</th>
</tr>
</thead>
<tbody>
<tr>
<td>19,31</td>
<td>21,23</td>
<td>25,93</td>
<td>30,76</td>
<td>35,55</td>
<td>39,48</td>
<td>44,11</td>
<td>43,80</td>
<td>37,96</td>
<td>32,27</td>
<td>24,67</td>
<td>19,75</td>
<td>31,24/31,235</td>
</tr>
<tr>
<td>4,77</td>
<td>6,51</td>
<td>9,85</td>
<td>14,67</td>
<td>19,43</td>
<td>24,46</td>
<td>27,93</td>
<td>27,11</td>
<td>22,54</td>
<td>17,05</td>
<td>9,86</td>
<td>5,46</td>
<td>42,613</td>
</tr>
<tr>
<td>59,64</td>
<td>51,59</td>
<td>44,82</td>
<td>37,91</td>
<td>33,68</td>
<td>28,59</td>
<td>26,55</td>
<td>28,09</td>
<td>39,36</td>
<td>45,73</td>
<td>56,00</td>
<td>59,41</td>
<td>42,613</td>
</tr>
<tr>
<td>2,65</td>
<td>3,08</td>
<td>3,54</td>
<td>4,06</td>
<td>3,95</td>
<td>3,95</td>
<td>3,69</td>
<td>3,24</td>
<td>3,02</td>
<td>2,94</td>
<td>2,53</td>
<td>2,34</td>
<td>32,58</td>
</tr>
<tr>
<td>116,98</td>
<td>149,26</td>
<td>217,90</td>
<td>280,39</td>
<td>353,19</td>
<td>410,10</td>
<td>459,45</td>
<td>438,21</td>
<td>310,00</td>
<td>253,58</td>
<td>146,17</td>
<td>104,56</td>
<td>3239,809/278,29</td>
</tr>
<tr>
<td>297,54</td>
<td>288,63</td>
<td>244,69</td>
<td>269,83</td>
<td>289,95</td>
<td>276,42</td>
<td>334,95</td>
<td>327,67</td>
<td>269,56</td>
<td>245,71</td>
<td>258,90</td>
<td>23,749</td>
<td>38,045</td>
</tr>
<tr>
<td>12,07</td>
<td>13,79</td>
<td>18,03</td>
<td>22,94</td>
<td>27,77</td>
<td>32,82</td>
<td>36,22</td>
<td>35,24</td>
<td>30,35</td>
<td>25,27</td>
<td>17,80</td>
<td>12,67</td>
<td>38,045*</td>
</tr>
<tr>
<td>9,345</td>
<td>1,255</td>
<td>5,664</td>
<td>1,527</td>
<td>0,636</td>
<td>0,573</td>
<td>0,318</td>
<td>1,718</td>
<td>3,691</td>
<td>6,127</td>
<td>5,755</td>
<td>1,436</td>
<td>38,045</td>
</tr>
</tbody>
</table>

La région de Ouargla, qui appartient à l’étage bioclimatique saharien, est caractérisée par une aridité nettement marquée et une sécheresse quasi permanente (IDDER et al, 2011).

La température annuelle moyenne, mesurée sur la période 2002-2012, est de 23,74°C. Les maxima et minima moyens sont de 44,11°C et 4,77°C enregistrés, respectivement, pendant les mois de juillet et de janvier.

Le cumul moyen annuel des précipitations sur cette même période est de 38,04 mm. Ces précipitations sont marquées par leur caractère faible et irrégulier d’un mois à un autre à travers les années. Et le maximum est de 9,345 mm en janvier.
L'évaporation est très importante surtout lorsqu'elle est renforcée par les vents chauds. Le cumul est de l'ordre de 3239,809 mm/an avec un maximum mensuel de 459,45 mm au mois de juillet et un minimum de 104,56 mm au mois de décembre.

L'air à Ouargla est très sec. L'humidité moyenne annuelle est de 42,613 %. Le maximum d'humidité étant de 59,64 % pour le mois de janvier, le minimum est de 26,55 % pour le mois de juillet à cause des fortes évaporation et des vents chauds durant ce mois.

Le vent dans la région de Ouargla souffle toute l’année avec des vitesses variables allant de 2,34 m/s en décembre à 4,07m/s en mai.

La durée moyenne annuelle de l’insolation est de 278,29 heures avec un maximum de 334,95 heures en juillet et un minimum de 235,61 heures en novembre.

V.1.3. Climagramme d'Emberger

Il permet de connaitre l’étage bioclimatique de la région d’étude.
L’indice est égal au quotient pluviométrique d'Emberger, il peut s’écritre (figure 06).

\[Q_3 = \frac{3,43P}{M-m} \]

Q3 : Le quotient pluviométrique d'Emberger ;
P : Pluviométrie moyenne annuelle en mm ;
M : Moyenne des températures maximales du mois le plus chaud en °C ;
m : Moyenne des températures minimales du mois le plus froid en °C ;
3,43 : Coefficient de Stewart établi pour l'Algérie ; A partir de ce Climagramme, on constate que l'étage bioclimatique de la région de Ouargla est saharien à hiver doux, \(Q_3 = 3.31 \)

![Figure N° 06: Situation de ville de Ouargla selon le Climagramme d’Emberger (2002-2012).](image)
V.1.4. Sol

Le sol à Ouargla est squelettique de texture sableuse et structure particulaire, le pH est alcalin, le taux de salinité est très important à cause de la remontée des eaux de la nappe phréatique (KATEB, 2003).

D'après (HALILAT, 1993), la typologie des sols généralement rencontrés à Ouargla fait partie des trois groupes suivants :
- Les sols sal-sodiques.
- Les sols hydromorphes.
- Les sols à minéraux bruts.

V.1.5. Hydrogéologie

Les eaux souterraines constituent la principale source hydrique dans la région de Ouargla. On distingue trois nappes différentes :
- Une nappe phréatique avec une profondeur de 1 à 8 m.
- Une nappe du Complexe Terminal composée de :
 - La nappe du Mio-pliocène dite nappe des sables.
 - La nappe des calcaires (Sénonien).

V.1.6. Géologie

V.2. Présentation de la station d’épuration par lagunage aérée

V.2.1. Situation géographique

La station de lagunage de Ouargla, mise en service en 2009, a été réalisée par la société allemande Dwydag pour le compte de l’ONA. Elle située au Nord-Est de Ouargla entre les deux branches du canal de drainage dans la région de Saïd Otba au nord de la RN 49 (figure 07).

![Figure N° 07: Situation géographique de la S.T.E.P par rapport à la ville de Ouargla (MENSOUS, 2011).](image)

V.2.2. Caractéristiques de la STEP Ouargla

- Capacité : 400000eq/habi.
- Surface totale : 80 ha.
- Nombre de lits de séchage : 11 lits.
- Nombre de bassins : 08 bassins devisés en 03 niveaux.
Tableau N° 06: Les données de la station de Ouargla (S.T.E.P. Ouargla, 2009).

<table>
<thead>
<tr>
<th>STEP de Ouargla</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Premier niveau</td>
<td>Deuxième niveau</td>
</tr>
<tr>
<td>Nombre de bassins</td>
<td>4 bassins d’aération</td>
</tr>
<tr>
<td>Volume total</td>
<td>340 800 m³</td>
</tr>
<tr>
<td>Volume par unité de bassin</td>
<td>852 00 m³</td>
</tr>
<tr>
<td>Surface totale</td>
<td>9.6 hectares</td>
</tr>
<tr>
<td>Surface par unité de bassin</td>
<td>2.4 hectares</td>
</tr>
<tr>
<td>Profondeur des bassins</td>
<td>3.5 m</td>
</tr>
<tr>
<td>Temps de séjour</td>
<td>7 jours</td>
</tr>
<tr>
<td>Nombre des aérateurs</td>
<td>12 dans chaque bassins</td>
</tr>
</tbody>
</table>

V.2.3. Schéma des bassins de la S.T.E.P de Ouargla

![Schéma des bassins de la S.T.E.P de Ouargla](image)

Figure N°08: S.T.E.P. de - Saïd Otba - Ouargla.
V.2.4. Principe de traitement

V.2.4.1. Prétraitement

Les eaux usées à traiter arrivent à la station d'épuration par l’intermédiaire de cinq stations de refoulements dans un regard de dégazage. Ce dernier assure une oxygénation naturelle des eaux brutes. Après, les eaux usées passent au travers de deux dégrilleurs qui retiennent les matières les plus volumineuses charriées par l'eau brute, et en fin pour extraire des eaux brutes, les graviers, les sables et les particules minérales plus ou moins fines, les eaux passent par un dessableur.

V.2.4.2. Ouvrage de répartition

Le répartiteur permet de repartir les eaux usées vers les lagunes du premier étage. Il est disposé en tête de station en aval des ouvrages de prétraitement.

V.2.4.3. Traitement secondaire

Après le prétraitement, les eaux à traiter subissent un traitement par le système de lagunage aéré grâce à 08 bassins d’aération qui contiennent des aérateurs. Il s’agit d’une technique d’épuration biologique par culture libre avec un apport artificiel d’oxygène. Cette étape est constituée de deux étages d’aération.

A.1. Lagunes d’aération (1er étage)

Les effluents sont répartis entre les quatre lagunes grâce à un répartiteur. Dans l’étage d’aération, l’oxygénation est assurée par des aérateurs de surface. Cette aération mécanique favorise le développement des bactéries qui dégradent la matière organique et assimilent les nutriments. Le temps de séjour minimal dans les lagunes d’aération du premier étage est supérieur ou égal à 5 jours. Actuellement, il n'y a que deux lagunes qui fonctionnent au niveau de cet étage.

Photo N°03 : Les conduites de l’arrivée de l’eau à la S.T.E.P.
A.2. Lagunes d’aération (2ème étage)

Au deuxième étage, le nombre d’aérateurs et de bassins est inférieur au premier. Les eaux en cours de traitement transiiten de façon gravitaire des lagunes aérées de 1er étage vers les lagunes aérées du 2ème étage (lagunes de décantation). Actuellement, il n’y a qu’une seule lagune qui fonctionne au niveau de cet étage.

B. Traitement complémentaire (Lagune de finition)

Les eaux sortant des lagunes aérées du 2ème étage sont dirigées vers les deux lagunes de finition. C’est le lieu de séparation physique de l’eau épurée et de la boue biologique, cette dernière est formée après une lente agglomération des matières en suspensions (amas de micro-organismes et de particules piégées). Actuellement, il n’y a qu’une seule lagune qui fonctionne au niveau de cet étage.

V.2.4.4. Traitement des boues

Le système consiste à sécher les boues décantées au fond des lagunes à l’air libre sur des lits de séchage.

V.2.4.5. Sortie des eaux épurées

Elles sont rejetées de la S.T.E.P par deux canaux :

Canal de sortie des eaux traitées vers Sebkha Safioune (40 Km au nord de la STEP). Volume de 35000 m³/jours

Canal de transfert des eaux de drainage vers Sebkha Safioune

Photo N°04 : La sortie de la S.T.E.P.

V.3. Principe expérimental

V.3.1. L’objectif

L’objectif de notre expérience consiste à comparer la croissance de deux espèces végétales irriguées parallèlement avec les eaux épurées, issues du bassin de finition, et les eaux de robinet provenant d’un forage du Mio-pliocène situé dans la STEP.
Les espèces végétales choisies sont *Acacia farnesiana* et *Albizia julibrissin*. L’expérience a duré 65 jours, du 10 Mars 2013 au 14 Mai 2013. Les paramètres de croissance mesurés sont la hauteur et le diamètre qui ont été déterminés avec une fréquence hebdomadaire à l’aide d’une règle graduée et d’un pied à coulisse (photos 5 et 6).

Photo N°05 : Mesure de diamètre.
Photo N°06 : Mesure de la hauteur.

V.3.2. Protocole expérimental

Pour atteindre notre objectif, nous avons divisé le site en deux blocs expérimentaux Bloc 1 et Bloc 2. Le Bloc 1 est irrigué avec les eaux de forage provenant d’un robinet situé à proximité du site et le Bloc 2 est irrigué avec les eaux épurées provenant du bassin de finition de la station de lagunage. Chaque bloc a été partagé en deux sous blocs de la manière suivante (figure 09).

Bloc 1 : Sous bloc 1 : contenant 24 plants d’*Albizia julibrissin*
Sous bloc 2 : contenant 24 plants d’*Acacia farnesiana*

Bloc 2 : Sous bloc 1 : contenant 24 plants d’*Albizia julibrissin*
Sous bloc 2 : contenant 24 plants d’*Acacia farnesiana*

Les deux blocs possèdent les dimensions suivantes :

Bloc 1 : Irrigué par les eaux de forage

- Longueur est : 27 m
- Largeur est : 8
- Surface est 216 m²
Bloc 2 : Irrigué par les eaux usées épurées

- Longueur est : 25 m
- Largeur est : 8 m
- Surface est : 200 m²

♦ Distance entre les deux blocs : 6 m
♦ Distance entre les deux sous blocs du bloc 1 : 6 m
♦ Distance entre les deux sous blocs du bloc 2 : 4 m
♦ Espacement entre les plantes : 2 m

Figure N°09 : Schéma de principe du protocole expérimental.
V.3.3. Site expérimental

Le site choisi pour notre expérience se situe au sein de la station d’épuration par lagunage aéré de la ville de Ouargla (figure 10 et photo 07). Ce site possède les dimensions suivantes :
- Longueur : 58 m
- Largeur : 8 m
- Surface : 464 m²

Figure N°10 : Situation du site d’expérimentation dans la S.T.E.P.

Photo N°07 : Site expérimental avant la plantation.

V.3.4. Étapes de mise en place de l’expérience

V.3.4.1. Etape de préparation

La préparation du site expérimental et des parcelles a duré un mois (mois de février) durant lequel nous avons entrepris les opérations préalables suivantes :
- Egalisation du niveau général du terrain (pente) en utilisant des pelles et des pioches.
- Les étapes suivantes de préparation des parcelles sont résumées dans les photos ci-dessous (photos 8, 9 et 10).
Photo N° 08 : Marquage avec de la chaux des emplacements de chaque plante à l’aide d’un décamètre.

Photo N° 09 : Creusement de trous destinés à la plantation à l’aide d’une pelle mécanique.

Photo N° 10 : Nettoyage et élimination des cailloux et des grosses particules grâce à l’utilisation de pioches, de pelles et de brouettes.
V.3.4.2. Étapes de plantation

La plantation a eu le 10/03/2013 au matin en suivant les étapes suivantes (photos 11, 12 et 13):

Photo N°11 : Homogénéisation des diamètres des trous destinés à la plantation.

Photo N°12 : Placement des plants dans les trous.

Photo N°13: Le terrain après la plantation (Protection des plantes à l’aide de palmes).
Après la plantation, nous avons arrosé les plantes avec une dose de 5 l par jour pendant les premiers 15 jours, ensuite cette dose a été fournie tous les 2 jours.

L’irrigation s’est faite par l’utilisation de sceaux gradués et des gants pour les eaux épurées (photo14).

Photo N°14 : Irrigation des plants.

V.4. Caractéristiques des eaux d’irrigation

Nous avons utilisé pour l’irrigation deux types d’eau : les eaux épurées issues du lagunage et les eaux de robinet. Leurs caractéristiques ont été déterminées grâce aux techniques d’analyses présentées ci-dessous.

V.4.1. Techniques d’analyse des eaux d’irrigation

V.4.1.1. Prélèvement

Le mode de prélèvement variera suivant la nature de l’échantillon. Dans notre cas nous avons réalisé des prélèvements d’eau selon le type d’analyse.

i. Sur le plan physico-chimique

-L’eau traitée

L'opération s'est faite manuellement à la sortie du bassin de finition à l'aide d'un petit récipient qui est ensuite transvasé dans des bouteilles avant de prendre l'échantillon au laboratoire de la station d'épuration pour effectuer les analyses appropriées.
- L’eau de robinet

 L'échantillon a été prélevé d’un robinet situé à proximité de la parcelle expérimentale grâce à des flacons.

ii. Sur le plan bactériologique

 En ce qui concerne les analyses bactériologiques, les récipients qu'on a utilisés contenant les eaux prélevées à la sortie du bassin de finition, sont des flacons en verre propres stérilisés au préalable, étiquetés sur lesquels on a mentionné le lieu et la date de prélèvement de cette eau. Cette démarche entreprise, concernant le transport et la conservation des échantillons destinés aux analyses bactériologiques, fait référence aux méthodes décrites par (RODIER et al, 2005).

V.4.1.2. Analyses physico-chimiques des eaux épurées et des eaux de robinet

 Les analyses physico-chimiques des eaux épurées, effectuées au niveau du laboratoire de la STEP ; ont concerné les paramètres suivants :
 - La salinité, la conductivité, la T°, le pH et l’O₂ dissous. Ces analyses ont été effectuées chaque jour durant toute la période de l’expérience;
 - DCO, DBO₅ et MES. Ces analyses ont été effectuées une fois par semaine ;
 - N₂, NO₃⁻, NH₄⁺, NT et PT. Ces analyses ont été effectuées une fois par mois.

 Pour les analyses ioniques des eaux épurées et des eaux de robinet les analyses ont été effectuées une fois au niveau du laboratoire de l’ANRH et ont concerné les paramètres suivants : pH, CE, Ca²⁺, Mg²⁺, Na⁺, K⁺, Cl⁻, HCO₃⁻, NO₃⁻, SO₄²⁻.

A. Détermination des matières en suspension MES

 ➢ But d’analyse : Est de déterminer le taux de matière en suspension d’une eau épurée.

 ➢ Principe : Mesurer le poids sec d'un résidu, obtenu à partir de l'échantillon par filtration ou centrifugation, après passage à l'étuve à 105 °C.L’unité de mesure s'expriment en mg/l.

 Le taux des MES est donnée par l’expression suivante :

\[
\text{MES} = \frac{1000(M1-M0)}{V}
\]

MES : La teneur en MES en (mg/l).
M1 : La masse en (mg) de la capsule contenant l'échantillon après étuvage à 150°C
M0 : La masse en (mg) de la capsule vide.
V : Volume de la prise d'essai en (ml).

B. Demande chimique en oxygène DCO

➢ But d'analyse

La mesure de la demande chimique en oxygène nous renseigne sur la bonne marche des bassins d'aération et nous permet d'estimer le volume de prise d'essai de la DBO₅.

➢ Principe

Il s'agit d'une oxydation chimique des matières réductrices contenues dans l'eau par excès de bichromate de potassium (K₂Cr₂O₇) en milieu acidifié par l'acide sulfurique (H₂SO₄), en présence de sulfate d'argent (Ag₂ SO₄) et de sulfate de mercure (HgSO₄). Nous avons utilisé un réacteur à DCO à 150°C.

➢ Expression des résultats

La teneur en DCO est donnée en mg/l à l’aide d’un spectrophotomètre (DR2800).

C. Demande biologique en oxygène DBO₅

➢ principe

L'échantillon d'eau introduit dans une enceinte thermostats est mis sous incubation. On fait la lecture de la masse d'oxygène dissous, nécessaire aux microorganismes pour la dégradation, en présence d'air pendant cinq (05) jours. Les microorganismes présents consomment l'oxygène dissous qui est remplacé en permanence par l'oxygène de l'air, contenu dans le flacon provoquant une diminution de la pression au dessus de l'échantillon.

Cette dépression sera enregistrée par une OxiTop®.

➢ Procédure

La détermination de la DCO est primordiale pour connaître les volumes à analyser pour le DBO₅. Le volume de la prise d’essai : (DBO₅) =DCO (mg/l) × 0.80 pour les eaux urbaines.

➢ Expression des résultats

DBO₅ (mg/l) = lecture × facteur
D. Détermination des nitrates- nitrites

Ces paramètres sont mesurés à l'aide de l'appareil spectrophotomètre (DR/2800).

E. Détermination de la conductivité électrique, de la salinité et de la température

La mesure de la conductivité électrique, de la salinité et de la température a été faite à l'aide d'un conductimètre de poche (cond 3400i).

F. Détermination de l'O₂ dissous

➢ Principe

Il s'agit d'une mesure ampérométrique d'un lourant produit à l'intérieur d'une sonde à oxygène. Cette sonde est constituée d'une cellule fermée par une membrane sélective à l'oxygène. La mesure de l'O₂ dissous a été réalisée grâce d'un oxymétrie (Oxy 340i).

G. Détermination du pH

On a utilisé le système de mesure électrochimique à l'aide du pH-mètre de poche (pH 340i).

H. Dosage des cations et des anions

a) Dosage du Calcium Ca⁺⁺ et du Magnésium Mg⁺⁺

Ces éléments ont été déterminés par la méthode titrimétrique à l'EDTA (Ethylène Diamine Tétra Acétique) qui nous permet de réaliser un dosage de la somme de calcium et de magnésium. Les réactifs nécessaires pour l'effectuation du mode opératoire sont: l'Ethylène Diamine Tétra Acétique (E.D.T.A) à 10N, une solution tampon pH=10, les indicateurs colorés et une solution KOH (concentré à 28%) (RODIER et al, 2005).

b) Dosage du potassium K⁺ et du sodium Na⁺

La méthode par spectrophotométrie d'émission de flamme nous a permis d'identifier les concentrations de ces éléments. Pour cette méthode les solutions étalons pour le Na⁺ sont de 60,100, 150,200 mg/l et celles de K⁺ sont de 10, 30, 90, 100, 150, 200 mg/l.
c) Dosage des carbonates CO_3^{2-} et bicarbonates HCO_3^-

Il a été effectué par titrimétrie qui a nécessité l’emploi des réactifs suivant: l’acide sulfurique H_2SO_4 0.1N, le Phoenoletphetaline 5% et le Méthyle orange 5%.

d) Dosage des sulfates solubles SO_4^{2-}

Les ions sulfate sont précipités et pesés à l’état de sulfate de baryum. Les Réactifs utilisés sont: une solution de chlorure de baryum (BaCl_2) à 10%, une solution acide chlorhydrique (HCl) a 10% et une solution-mère de sulfates a 120mg/l. L’appareil utilisé est le spectrophotomètre à la longueur d’onde h= 680nm (RODIER et al, 2005).

e) Dosage des chlorures solubles Cl^-

Leurs concentrations ont été déterminées par la méthode de MOHR où le chlore est précipité par du nitrate d’argent en présence de chromate de potassium. Les réactifs utilisés dans ce cas sont: une solution de nitrate d’argent (AgNO_3) à 0.1N et une solution de chromate de potassium (K_2CrO_4) à 10% (RODIER et al, 2005).

V.4.1.3. Analyses bactériologiques des eaux épurées

L’analyse bactériologique se fait dans but de protection de la santé humaine et de l’environnement. Elle consiste en la recherche et le dénombrement des germes pathogènes et de micro-organismes dans les eaux.

Le prélèvement et les analyses ont été effectués le 29/04/2013. L’heure de prise des échantillons a été environ 09:00 h du matin. Toutes les analyses bactériologiques ont été effectuées au niveau du laboratoire de microbiologie de l’ITAS.

- Préparation des dilutions

On prélève dans les meilleures conditions d’asepsie 1ml de la solution mère et on l’introduit dans 9 ml d’eau distillée. Cela fait la dilution 10^{-1}, aussi obtenus on procède de la même manière jusqu’à atteindre la dilution 10^{-4}.

Les matières fécales sont la principale source de contamination des eaux.

Afin de disposer d’une méthode simple et sensible, seuls les germes témoins de contamination fécale sont recherche.
- Les coliformes totaux et fécaux
- Les streptocoques totaux et fécaux
- Les clostridiums sulfito-réducteurs
- Les staphylocoques
- *Escherichia coli*

A. Recherche et dénombrement des coliformes totaux et fécaux

La méthode utilisée pour cette recherche est la méthode de détermination du nombre le plus probable (NPP) par inoculation de tubes en milieux liquides (fermentation en tubes multiples).

Il s’agit d’un ensemencement de plusieurs dilutions de l’échantillon, chacune dans une série de tubes (série de 3) contenant un milieu de culture non véritablement sélectif mais permettant de mettre en évidence la fermentation du lactose avec production de gaz (RODIER et al, 2005).

B. Recherche et dénombrement des streptocoques totaux et fécaux

Nous avons utilisé la même méthode que la précédente avec des milieux spécifiques pour les streptocoques (RODIER et al, 2005).

C. Recherche et dénombrement des Clostridium sulfito-réducteurs

Pour ce genre de bactéries on a utilisé la méthode par incorporation en gélose (RODIER et al, 2005).

Après destruction des formes végétatives par chauffage à 80 °C, l’échantillon est incorporé à un milieu de base fondu, régénéré et additionné de sulfite de sodium et de sel de fer. La composition du milieu est établie pour tenir compte d’un volume déterminé d’eau incorporé (RODIER et al, 2005).

D. Recherche et dénombrement des staphylocoques

On a utilisé la même méthode que pour les coliformes et streptocoques (RODIER et al, 2005).
V. 5. Matériel végétal

Il est composé de deux espèces forestières connues et à croissance rapide. Il s’agit d’*Acacia farnesiana* et d’*Albizia julibrissin* (photos 15 et 16). Les plants de ces deux espèces proviennent de la pépinière de Ain El Beida.

Le nombre total d’individus utilisé pour notre expérience est de 96 (48 individus de chaque espèce).

Au niveau de la pépinière, les semences des deux espèces d’arbres ont été semées durant le mois de juillet 2012 dans des sacs plastiques qui contient la même quantité de sable rouge, de fumier et de sable fin.

![Photo N°15: Albizia julibrissin](image1.png) ![Photo N°16: Acacia farnesiana](image2.png)

V.6. Caractérisation du sol du site expérimental

Pour connaître les principales caractéristiques du sol du site expérimental, nous avons procédé à une description morphologique et à des analyses granulométriques ; ainsi qu’à la détermination du pH et la conductivité électrique, grâce à la réalisation de 2 profils l’un situé dans le bloc 1 (profil 1) et l’autre dans le bloc 2 (profil 2). Ces deux profils possèdent une superficie de 1m² avec 1m de largeur et 1m de profondeur (photos 17 et 18).
V. 6.1. Matériel

✓ Un bloc notes : pour noter toute les remarques et les informations
✓ Des sachets en plastique avec des étiquettes : pour transporter les échantillons du sol au laboratoire.
✓ Une Charte Mancel : pour la détermination de la couleur des sols.
✓ Des couteaux pédologiques : pour délimiter les horizons.
✓ Une mire : pour délimiter la profondeur des horizons.

V. 6.2. Méthodes d’analyses

Les analyses ont été effectuées, au niveau de laboratoire des sciences pédologiques à l’ITAS, sur les différents échantillons du sol de chaque bloc avant la plantation. Les échantillons du sol ont été séchés à l’air libre, puis broyés et passés ensuite au tamis à 2 mm. La terre fine récupérée est conservée dans des sachets jusqu’au moment des analyses.

V. 6.2.1. Description des horizons du site expérimental

Cette description a été effectuée sur le terrain grâce aux deux profils réalisés :

Photo N°17 : Délimitation des horizons par les couteaux pédologiques.

Photo N°18 : Prise d’échantillons de chaque horizon de chaque profil.
V. 6.2.2. Analyse granulométrique

L’analyse granulométrique consiste à séparer la partie minérale du sol en fractions selon les dimensions des particules et à déterminer, en poids, les proportions relatives de ces fractions.

Elle a été effectuée par la méthode de tamisage par voie sèche avec l’utilisation d’un vibreur. On a pesé 100g du sol, après on le superposé dans une série de tamis (100, 500, 200, 100, 50 microm). Ensuite, on fait couler les 5 tamis superposés durant 10 min. Puis, on pèse le sol resté dans chaque tamis.

V. 6.2.3. Mesure du pH

La mesure du pH du sol est empirique. Il est déterminé dans une suspension sol/ eau distillée suivant un rapport 1/5. La mesure est faite à l’aide d’un pH mètre à électrode en verre.

V. 6.2.4. Mesure de la conductivité électrique

La conductivité électrique est la mesure de la teneur en sel solubles d’une solution.

Elle est mesurée par un conductimètre à une température de 25°C avec un rapport sol/eau distillée de 1/5. La conductivité électrique est mesurée encore à l’aide de conductimètre (M 38).
VI.1. Analyses physico-chimiques des eaux épurées

Les résultats des analyses physico-chimiques des eaux épurées sont présentés dans le tableau 13 (Annexe). Nous constatons que les valeurs journalières de la température, du pH, de la conductivité électrique et de la salinité et de l’oxygène dissous ne varient pas de manière importante pendant la période de l’expérience.

En ce qui concerne les paramètres de pollution, la valeur moyenne de la DBO₅ pour la période d’étude, égale à 27 mg/l, est proche de celle fixée par la communauté européenne (25 mg/l) (directive 91/271/CE) et se situe au dessous de la valeur mentionnée dans les normes algériennes (30 mg/l) (Journal Officiel de l’Algérie, 1993) (tableau 14, Annexe).

La valeur de la DCO, égale en moyenne à 132 mg/l, se situe légèrement au dessus de la norme indiquée par la communauté européenne (125 mg/l) (directive 91/271/CE) et dépasse de celle de l'OMS appliquée en Algérie (90 mg/l) (Journal Officiel de l'Algérie, 1993) (tableau 14, Annexe).

Les MES, leur valeur moyenne trouvée pendant la période de l’expérience, est égale à 90 mg/l. Cette valeur dépasse de loin les normes de la communauté européenne de 35 mg/l (directive 91/271/CE) et celles de l'OMS appliquées en Algérie (30 mg/l) (Journal Officiel de l'Algérie, 1993). Ces valeurs élevées en MES reviennent principalement au développement important des algues et du zooplancton dans les bassins (tableau 14, Annexe).

Tableau N° 07: Bilan ionique des eaux épurées.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>SAR</th>
<th>pH</th>
<th>C₁₅</th>
<th>C₀⁺ mél</th>
<th>Mg⁺ mél</th>
<th>Na⁺ mél</th>
<th>Cl⁻ mél</th>
<th>HCO₃⁻ mél</th>
<th>NO₃ mél</th>
<th>SO₃²⁻ mél</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eau usée traitée</td>
<td>42,71</td>
<td>7,30</td>
<td>13,51</td>
<td>12,06</td>
<td>1,95</td>
<td>108,91</td>
<td>4,83</td>
<td>118,3</td>
<td>9</td>
<td>04</td>
</tr>
</tbody>
</table>

D’après la figure 11 qui présente le diagramme de classification des eaux d’irrigation d’après RIVERSIDE modifié par DURAND (1958), les eaux usées épurées (EUE) appartiennent à la dernière classe C5 S4, ces eaux très déconseillées par l’irrigation.

VI.2. Résultats des analyses bactériologiques

Les analyses bactériologiques pour les eaux traitées montrent la présence de streptocoques (totaux et fécaux) et de coliformes (totaux et fécaux) avec des quantités...
considérables. Les staphylocoques sont présents avec des quantités faibles. On note enfin une absence totale des Clostridium sulfito réducteurs (tableau 08).

La réutilisation des eaux épurées est essentiellement liée à la qualité microbiologique des eaux. Pour une réutilisation dans le domaine de l’arrosage des arbres, la norme de l’OMS limite le nombre de Coliformes fécaux à 10^3 et le nombre d’helminthes à 1 œuf/l. Dans notre cas, nous avons été dans l’impossibilité de réaliser les analyses parasitologiques faute de moyens pratiques de laboratoire. Le nombre de Coliformes fécaux trouvé paraît très élevé par rapport aux indications de l’OMS. Il est important de signaler cependant que nous n’avions pu réaliser qu’une seule analyse de ce paramètre de pollution. Il est donc difficile de juger de la fiabilité du nombre trouvé pour se prononcer de manière scientifique sur la possibilité de réutilisation des eaux.

Tableau N° 08 : Résultats des analyses bactériologiques.

<table>
<thead>
<tr>
<th>Bactérie</th>
<th>Dénombrement</th>
</tr>
</thead>
<tbody>
<tr>
<td>coliformes totaux</td>
<td>11.10^6</td>
</tr>
<tr>
<td>coliformes fécaux</td>
<td>3.10^6</td>
</tr>
<tr>
<td>staphylocoques</td>
<td>1.10</td>
</tr>
<tr>
<td>streptocoques totaux</td>
<td>15.10^4</td>
</tr>
<tr>
<td>streptocoques fécaux</td>
<td>15.10^4</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>Présente</td>
</tr>
<tr>
<td>Clostridium sulfito réducteurs</td>
<td>Absence</td>
</tr>
</tbody>
</table>

VI.3. Analyses physico-chimiques des eaux de robinet

Les résultats d’analyses physico-chimiques des eaux de robinet sont consignés dans le tableau 11. Contrairement aux eaux épurées, les eaux urbaines sont caractérisées par des taux de minéralisation relativement modérées.

D’après la figure 11, les eaux de forage (EF) appartiennent à la classe C3S2, correspondant à des eaux d’une qualité médiocre à mauvaise.

Tableau N° 09 : Bilan ionique des eaux de robinet.

<table>
<thead>
<tr>
<th>Paramètres</th>
<th>SAR</th>
<th>pH</th>
<th>C$_{25}$ mS/cm</th>
<th>Ca$^{2+}$ mén/l</th>
<th>Mg$^+$ mén/l</th>
<th>Na$^+$ mén/l</th>
<th>K$^+$ mén/l</th>
<th>Cl$^-$ mén/l</th>
<th>HCO$_3^-$ mén/l</th>
<th>NO$_3^-$ mén/l</th>
<th>SO$_4^{2-}$ mén/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eau de forage</td>
<td>7,76</td>
<td>7,87</td>
<td>2,49</td>
<td>2,28</td>
<td>2,05</td>
<td>11,41</td>
<td>0,83</td>
<td>11,96</td>
<td>2,95</td>
<td>4,80</td>
<td>3,25</td>
</tr>
</tbody>
</table>
Figure N°11 : Classification des eaux d’irrigation dans selon Diagramme de RIVERSIDE modifié par DURAND (1958).

VI.4. Analyse du sol

VI.4.1. Caractérisation morphologique et analytique du profil 01 et du profil 02

- Date de prélèvement et de description : 05/03/2013
- Topographie : pente très faible
- Situation : S.T.E.P de Ouargla
- Temps : Ensoleillé
- Végétation : inexistante
- Aspect de la surface : sol nu avec sable dunaire
- Occupation du sol : sol nu sans végétation
- La saison d’étude : hivernale
Les analyses relatives aux deux profils sont présentées dans le tableau 10.

Tableau N°10 : Caractéristiques morphologiques et analytiques des deux profils du sol.

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Profil 01</th>
<th>Profil 02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profondeur (cm)</td>
<td>H 1</td>
<td>H 2</td>
</tr>
<tr>
<td>0 – 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O9 -67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67 -100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>7.51</td>
<td>7.40</td>
</tr>
<tr>
<td>C.E (ds /m)</td>
<td>3.14</td>
<td>2.93</td>
</tr>
<tr>
<td>Granulométrie(%)</td>
<td>S. t .g</td>
<td>7.5</td>
</tr>
<tr>
<td>S. g</td>
<td>8.7</td>
<td>6.5</td>
</tr>
<tr>
<td>S. m</td>
<td>28</td>
<td>19.4</td>
</tr>
<tr>
<td>S. f</td>
<td>38.7</td>
<td>56.1</td>
</tr>
<tr>
<td>S. t .f</td>
<td>13.1</td>
<td>11.3</td>
</tr>
<tr>
<td>L+A</td>
<td>2.6</td>
<td>0.2</td>
</tr>
</tbody>
</table>

- **S. t .g** : Sable très grossiers.
- **S. g** : Sable grossiers.
- **S. m** : Sable moyen.
- **S. f** : Sable fin.
- **S. t .f** : Sable très fin.
- **L+A** : Limon + Argile.

Les deux profils se caractérisent par d’une conductivité électrique qui augmente de bas en haut, qui varie en surface de 4,8 à 2,54 ds /m et de 3,14 à 2,93 ds /m respectivement pour les profils 2 et 1.

Pour le pH des sols étudiés est proche de la neutralité.

VI.4.1.1.Description des horizons du profil 01

Horizon H1 (0-09 cm) : à l’état humide, la couleur 7,5 YR 8/4 (pink), moyenne effervescence à l’HCl, l’existence des éléments grossiers, pas des racines et des matières organiques, texture sableuse, friable et peurs de cailloux.
Figure N° 12 : Granulométrie (%) de l’horizon 1 du profil 1

Horizon H2 (09-67 cm) : à l’état humide, la couleur 7,5 YR 8/4 (pink), pas d’effervescence à l’HCl, l’existence des éléments grossiers, pas des racines et des matières organiques, texture sableuse et faible argile, friable et peus de cailloux.

Figure N° 13 : Granulométrie (%) de l’horizon 2 du profil 1

Horizon H3 (67-100 cm) : à l’état humide, la couleur 5YR 6/8 (redish yellow), faible effervescence à l’HCl, l’existence des éléments grossiers, pas des racines et des matières organiques, texture sableuse et faible argile, friable et sans cailloux.

Figure N° 14 : Granulométrie (%) de l’horizon 3 du profil 1
VI.4.1.2. Description des horizons du profil 02

Horizon H1 (0-07 cm) : à l’état humide, la couleur 7,5 YR 7/6 (redish yellow), moyenne effervescence à l’HCl, l’existence des éléments grossiers, pas des racines et des matières organiques, texture sableuse, friable et peu de cailloux.

![Diagramme d'analyse granulométrique d'Horizon H1](image)

Figure N° 15 : Granulométrie (%) de l’horizon 1 du profil 2

Horizon H2 (07-35 cm) : à l’état humide, la couleur 7,5 YR 8/4 (pink), pas d’effervescence à l’HCl, l’existence des éléments grossiers, pas des racines et des matières organiques, texture sableuse et faible argile, friable et peu de cailloux.

![Diagramme d'analyse granulométrique d'Horizon H2](image)

Figure N° 16 : Granulométrie (%) de l’horizon 2 du profil 2

Horizon H3 (35-100 cm) : à l’état humide, la couleur 5YR 6/8 (redish yellow), faible effervescence à l’HCl, l’existence des éléments grossiers, pas des racines et des matières organiques, texture sableuse et faible argile, friable et peu de cailloux.
Figure N° 17 : Granulométrie (%) de l’horizon 3 du profil 2

Nous constatons que les deux profils présentent une texture sableuse avec des proportions très élevées, pratiquement équivalentes : 97,96% pour le profil 1 et 98,5% pour le profil 2. Le calcaire est présent avec des taux moyens dans les horizons 1 des deux profils et des taux faibles à nuls dans les horizons 3 des deux profils.

Par conséquent, les deux profils appartenant aux deux blocs expérimentaux sont pratiquement homogènes sur le plan pédologique.

VI.5. Résultats des mesures biométriques des plantes

Au cours de la période de notre expérience qui a duré 65 jours, 7 mesures de suivi de la hauteur et du diamètre des deux espèces végétales ont été réalisés dans les blocs 1 et 2 irrigués respectivement avec les eaux de forage et les eaux traitées par lagunage (Annexe 06).

Durant les premiers jours de plantation, on n’observe aucune croissance de tous les individus dans les deux blocs. Cette phase correspond à une phase d’adaptation des individus à leur nouveau milieu (passage des conditions de la pépinière aux conditions naturelles : exposition au soleil, au vent et à une nouvelle eau d’irrigation).
VI.5.1.1. Suivi de la croissance de l’*Albizia julibrissin*

Cette espèce réagit de manière semblable à l’irrigation avec les eaux usées traitées par rapport à l’irrigation avec les eaux de forage. Les croissances obtenues en diamètres et en hauteurs sont similaires avec les deux types d’eaux (tableau 11).

i. **Croissance en Hauteur**

Dans le bloc 1, irrigué avec les eaux de robinet (figure 18), la hauteur varie en moyenne de 29,77 cm au début de l’expérience à 31,65 cm à la fin de l’expérience. La différence de croissance est donc de 1,88 cm.

Dans le bloc 2, irrigué avec les eaux épurées, nous constatons que la hauteur des plantes varie de 26,99 à 28,84 cm à la fin de l’expérience. La différence de croissance obtenue est de 1,85 cm (figure 18).

ii. **Croissance en Diamètre**

Pour les individus qui irrigués avec les eaux de robinet (figure 19), le diamètre varie en moyenne de 1,40 mm au démarrage de l’expérience à 1,89 mm à la fin de l’expérience, et de 1,35 à 1,84 mm pour les individus du deuxième bloc qui irriguées avec les eaux traitées. La différence de croissance des individus dans les deux blocs est identique, égale à 0,5 mm.

Globalement, on remarque que la croissance d’*Albizia julibrissin* est pratiquement identique dans les deux blocs.

Tableau N°11 : Valeurs moyennes de croissance en hauteur et en diamètre pour l’*Albizia julibrissin* dans les deux blocs expérimentaux.

<table>
<thead>
<tr>
<th>Albizia julibrissin (Bloc1)</th>
<th>Albizia julibrissin (Bloc2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (cm)</td>
<td>D (mm)</td>
</tr>
<tr>
<td>10/03/2013</td>
<td>29,77</td>
</tr>
<tr>
<td>09/04/2013</td>
<td>29,77</td>
</tr>
<tr>
<td>16/04/2013</td>
<td>30,41</td>
</tr>
<tr>
<td>23/04/2013</td>
<td>30,66</td>
</tr>
<tr>
<td>30/04/2013</td>
<td>30,94</td>
</tr>
<tr>
<td>07/05/2013</td>
<td>31,08</td>
</tr>
<tr>
<td>14/05/2013</td>
<td>31,65</td>
</tr>
</tbody>
</table>
Figure N° 18: Courbes de croissance en hauteur d’*Acacia julibrissin* dans les deux blocs expérimentaux.

Figure N° 19: Courbes de croissance en diamètre d’*Acacia julibrissin* dans les deux blocs expérimentaux.

VI.5.1.2. Suivi de la croissance de l’*Acacia farnesiana*

La croissance obtenue pour cet arbre avec l’utilisation des eaux épurées par rapport aux eaux de forage est moins évidente que pour l’*Acacia julibrissin*. Mais nous remarquons que l’espèce *Acacia farnesiana* réagit tout de même de manière positive à l’utilisation des eaux urbains épurées (tableau 12).
i. Croissance en Hauteur

Dans le bloc 1 irrigué avec les eaux de robinet (figure 20), la hauteur varie en moyenne de 21,44 cm au début de l’expérience à 22,33 cm à la fin de l’expérience. La différence de croissance est donc de 0,89 cm.

Dans le bloc 2 irrigué avec les eaux épurées nous constatons que la hauteur des plantes varie de 20,28 à 20,55 cm à la fin de l’expérience. La différence de croissance est dans ce cas de 0,27 cm (figure 20), c’est-à-dire une différence de 0,62 cm par rapport au bloc 1 irrigué avec les eaux de forage.

ii. Croissance en Diamètre

Pour les individus qui sont irrigués avec les eaux de robinet (figure 21), le diamètre varie en moyenne de 1,33 mm au début à 1,65 mm à la fin de l’expérience, et de 1,18 à 1,35 mm pour les individus du deuxième bloc.

La croissance de diamètre est plus faible dans le bloc 2 qui égale à 0,17 mm par rapport aux bloc1 qui égale à 0,32 mm.

Tableau N° 12: Valeurs moyennes de croissance en hauteur et en diamètre pour l’*Acacia farnesiana* dans les deux blocs expérimentaux.

<table>
<thead>
<tr>
<th>Date</th>
<th>Acacia farnesina (Bloc1)</th>
<th>Acacia farnesina (Bloc2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (cm)</td>
<td>D (mm)</td>
<td>H (cm)</td>
</tr>
<tr>
<td>10/03/2013</td>
<td>21,44</td>
<td>20,28</td>
</tr>
<tr>
<td>09/04/2013</td>
<td>21,44</td>
<td>20,28</td>
</tr>
<tr>
<td>16/04/2013</td>
<td>21,50</td>
<td>20,43</td>
</tr>
<tr>
<td>23/04/2013</td>
<td>21,61</td>
<td>20,47</td>
</tr>
<tr>
<td>30/04/2013</td>
<td>21,77</td>
<td>20,48</td>
</tr>
<tr>
<td>07/05/2013</td>
<td>22,04</td>
<td>20,52</td>
</tr>
<tr>
<td>14/05/2013</td>
<td>22,33</td>
<td>20,55</td>
</tr>
</tbody>
</table>
Figure N°20 : Courbes de croissance en hauteur d’*Acacia farnesiana* dans les deux blocs expérimentaux.

Figure N°21 : Courbes de croissance en diamètre d’*Acacia farnesiana* dans les deux blocs expérimentaux.

Discussion sur la faiblesse de croissance d’*Acacia farnesiana* dans le bloc 2

La faible croissance d’*Acacia farnesiana* dans le bloc irrigué avec les eaux usées épurées par rapport au bloc irrigué avec les eaux de robinet est due à un arrêt de croissance que nous avons constatée pour 18 plantes dans le bloc 2.

L’arrêt de croissance pourrait être expliqué par les hypothèses suivantes :
- **Fragilité des plants cultivés**

Les individus cultivés dans le bloc 2 sont plus fragiles que ceux cultivés dans le bloc 1. Ce qui est dû à notre impossibilité de choisir des individus robustes pour l’ensemble des deux blocs.

- **Manque de protection au niveau du bloc 2**

Malgré les précautions que nous avions prises pour la protection des individus, certains individus n’ont pas été suffisamment protégés contre les rayonnements solaires, les vents de sable qui sont très fréquents pendant la période de notre expérience (Mars, Avril et Mai).

- **Salinité des eaux épurées**

Les eaux d’irrigation sont caractérisées par une conductivité électrique très élevée qui pourrait expliquer en partie les faibles croisances obtenus pour cette espèce.

(DIARRA, 1991 ; In FABY, 1997) estime que l'augmentation de la salure dans le milieu de culture produit une augmentation du potentiel osmotique de ce milieu. Si la solution interne des plantes reste constante, il s'ensuit une diminution du gradient de potentiel osmotique entre le milieu et la plante; d'où une réduction de la disponibilité en eau. En réalité dans une certaine mesure, la plante ajuste la concentration de sa solution interne, quoi que avec un certain retard. Mais cet ajustement, ne peut évidemment pas compenser totalement l'effet de la salinité d'où une réduction de la turgescence des cellules et un retard de croissance.

 mêmes si on prend en considération que certaines plantes passent par une phase de stabilisation et de retard d’accroissement, l’effet de l’irrigation des individus par ces eaux usées épurées reste inconnu. Il aura probablement pour conséquence :

- Les plantes vont s’adapter et reprendront croissance après un temps d’arrêt.
- Ou bien, elles se dessécheront et finiront par mourir.
II.1. L’objectif du traitement des eaux usées

Les objectifs principaux de l’épuration des effluents générés sont de supprimer les nuisances et les risques actuels de contamination du milieu récepteur et de préserver la ressource en eau en réutilisant et valorisant les eaux traitées (BELMIMOUN, 2012).

II.2. Le lagunage

II.2.1. Définition du lagunage

II.2.2. Classification des types de lagunages

On peut classer les différents types de lagunages :

II.2.2.1. Selon l'agent responsable de l'épuration

Dans cette catégorie, il existe trois types de lagunages :

A. Lagunage à macrophytes

Cette filière d'épuration s'appuie sur le pouvoir épurateur des végétaux supérieurs (roseaux, iris, jacinthes d'eau, etc.).

Ces végétaux fixent les colonies de bactéries sur la base de leurs tiges et leurs rhizomes (racines), ce qui améliore les performances des organismes épurateurs. Par ailleurs, ils absorbent par leurs racines une partie des sels minéraux - nitrates et phosphates - issus de la décomposition de la matière organique présente dans les eaux usées (AREHN, 2002).

B. Lagunage à microphytes

Le lagunage à microphytes repose sur l'action combinée des algues unicellulaires et des bactéries. Grâce aux rayons lumineux, les algues produisent de l’oxygène qui
Chapitre II
Traitement des eaux usées par lagunage

permet la respiration et le développement des colonies bactériennes. Les bactéries dégradent la matière organique en azote ammoniacal. Celui-ci dans un milieu bien oxygéné, se transforme en nitrates assimilables par les algues, tout comme les phosphates qui proviennent en majeur partie des eaux de lessives (AREHN, 2002).

C. Lagunage composite (mixte)

Ce type de bassins fait associer une partie composée de microphytes et une partie plantée de macrophytes. Pour pouvoir assurer un fauchage régulier des végétaux, il faut bien dimensionner, aménager et localiser les zones plantées (OULED BOUKHARI, 2001).

II. 2.2.2. Selon l'apport d'aération

Dans cette catégorie, il existe deux types de lagunage :

- Le lagunage naturel.
- Le lagunage aéré (GOMMELLA et GUERREE, 1983).

A. Lagunage naturel

Le lagunage naturel est un procédé extensif de traitement des eaux usées, fondé sur un écosystème constitué principalement d'algues microscopiques et de bactéries aérobies et anaérobies. Le rayonnement solaire est utilisé comme source énergétique pour la production de l'oxygène par photosynthèse par les algues microscopiques qui peuplent le bassin (GAID, 1984).

On distingue trois types de bassin selon le processus mis en jeu:

- Les prébassins (facultatifs).
- Les bassins aérobies.
- Les bassins de maturation (aérés ou non aérés).

Les principaux processus sont :

- Décantation des MES, digestion anaérobie des matières décantées,
- oxydation des matières organiques biodégradables par les bactéries hétérotrophes,
B. Lagunage aéré

Le lagunage aéré est une technique d'épuration biologique par culture libre avec un apport artificiel d'oxygène.

Dans l'étage d'aération, les matières organiques des eaux usées sont dégradées par des micro-organismes qui consomment et assimilent les nutriments. Le principe de base est le même que celui des boues activées avec une densité de bactéries faible et l'absence de recirculation. L'oxygénation est assurée par un aéruteur de surface ou une insufflation d'air (DEKKICH, 2007).

On distingue deux types de lagunes aérées :

a. Lagunes aérées aérobies

Dans ce type de lagunes, on maintient une concentration en oxygène dissous dans tout le bassin. La profondeur peut être de 2.4 à 4.8 m, dans laquelle l'oxygène et les matières en suspension sont uniformément répartis dans le bassin (TCHIOMOGO, 2001).

b. Lagunes aérées facultatives

Dans ce type de bassins, l'oxygène n'est maintenu que dans la partie supérieure et la plus grand partie des matières inertes en suspension et des matières biologiques non oxydées décantent au fond du bassin, où elles subissent une décomposition anaérobie. Le bassin peut être modifié pour comporter un compartiment séparé de décantation capable de fournir un effluent clarifié (BEKKOUCHE et ZIDANE, 2004).

Figure N° 01 : les deux types de lagunes aérées (BECHAC et al, 1983).
c. Avantages et inconvénients du lagunage aéré

- **Avantages techniques**
 - Variation de charges hydrauliques et/ou organiques importantes ; effluents très concentrés.
 - Effluents déséquilibrés en nutriments (cause de foisonnement filamenteux en boues activées).
 - Traitements conjoints d'effluents domestiques et industriels biodégradables.
 - Bonne intégration paysagère.
 - Produits des boues stabilisées.
 - Fréquence de curage espacée (tous les deux à cinq ans).

- **Inconvénients techniques**
 - Rejet d'une qualité moyenne sur tous les paramètres.
 - Présence de matériels électromécaniques nécessitant l'entretien par un agent spécialisé.
 - Nuisances sonores liées à la présence de système d'aération.
 - Forte consommation énergétique (BAUDOT et PERERA, 2010).

II.3. Les organismes vivants dans les bassins de lagunage et leur rôle dans le traitement des eaux usées

Les bassins de lagunage sont colonisés naturellement par une grande variété d’organismes vivants, pour la plupart invisibles à l’œil nu.

II.3.1. Les bactéries

Ce sont les micro-organismes qui jouent le rôle principal dans l’épuration des eaux en éliminant la matière organique par un processus connu sous le nom de minéralisation (NACEUR et ZIDANI, 2007). On distingue trois types :

- **Les bactéries aérobies** : qui transforment, en présence d’oxygène dissous, la charge organique en matières minérales (nutriments) et en gaz.

- **Les bactéries anaérobies** : qui sont essentiellement méthanogènes (Formation de méthane) et qui réalisent la minéralisation de la matière organique au niveau des sédiments.

- **Les bactéries facultatives** : peuvent se développer dans les eaux usées en absence ou en présence d’oxygène dissous (BONDON et PIETRASANTA, 1994).
II.3.2. Les algues

Ce sont des plantes microscopiques. Elles sont représentées dans les lagunes principalement par les espèces suivantes :
✓ Algues bleues proches des bactéries.
✓ Algues vertes.
✓ Algues brunes (DEKKICH, 2007).

II.3.3. Les zooplanctons

Le rôle du zooplancton est d’assurer la finition de l’épuration des eaux. Les zooplanctons jouent un rôle important comme consommateurs de micro-algues, et donc comme régulateurs de ces populations phyto-planctoniques (BOUTELLI et MENASRIA, 2008).

✓ Les protozoaires

Ce sont des organismes unicellulaires (20-50 microns environ). Leur rôle principal est la clarification de l’effluent par prédation des bactéries libres (ATTAB et ATOUSSI, 2007).

Ils constituent le seul zooplancton hivernal réellement abondant dans les derniers bassins de lagunage. A la belle saison, on les observe même dans le bassin primaire (BONDON et PIETRSANTA, 1994).

✓ Les rotifères

Ce sont des vermiadiens microscopiques (40-80 microns environ) qui filtrent activement le phytoplancton et sont capables de s’accommoder à des taux d’oxygène dissous très faibles (BONDON et PIETRSANTA, 1994).
Annexe N°01 :

Le dégrilleur

Le dessableur

Photo N° 19: Le dégrilleur et le dessableur de la S.T.E.P

Photo N° 20: Lagune d’aération dans la STEP de Ouargla

Annexe N°02 : Méthodes analyses physico-chimiques

Photo N° 21: Réacteur DCO **Photo N° 22:** Appareil de filtration **Photo N° 23:** DBO- mètre
Annexe 03 : Méthodes d’analyses bactériologiques

Figure N° 22 : Recherche et dénombrement des coliformes totaux et fécaux
Figure N°23 : Recherche et dénombrement des streptocoques totaux et fécaux
Eau à analyser

Bain marie à 80°C pendant 10 minutes refroidir à l'eau de robinet

Mettre dans chaque tube : 10 ml GVF+ 8 gouttes de Sulfate de sodium +4 gouttes d'Alun de fer

Incubation à 37°C pendant 24 h à 48 h

Les colonies de Clostridium sulfito-réducteur sont celles des colonies noires entourées d'un halo noir

Figure N°24 : Recherche et dénombrement des Clostridium sulfito-réducteurs.
Figure N° 25 : Recherche des staphylocoques (LABBADI et MOUKAR, 2010).
Annexes N°04 : Méthodes d’analyses du sol

Photo N° 24: L’analyse granulométrique (Vibreur)
Photo N° 25: L’agitation

Photo N° 26: filtration de l’extrait du sol
Photo N° 27: Mesure de la conductivité

Annexes N°05 :
Tableau N°13 : Résultats d’analyses physico-chimiques des eaux traitées.

<table>
<thead>
<tr>
<th>Paramètre Date</th>
<th>T °C</th>
<th>pH</th>
<th>Con μS/cm</th>
<th>Sal g/l</th>
<th>O₂ mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/03/2013</td>
<td>20,5</td>
<td>8,16</td>
<td>14010</td>
<td>8,2</td>
<td>5,92</td>
</tr>
<tr>
<td>11/03/2013</td>
<td>19,2</td>
<td>8,25</td>
<td>14100</td>
<td>8,2</td>
<td>5,82</td>
</tr>
<tr>
<td>12/03/2013</td>
<td>18,9</td>
<td>8,25</td>
<td>14090</td>
<td>8,2</td>
<td>7,21</td>
</tr>
<tr>
<td>13/03/2013</td>
<td>19,8</td>
<td>8,24</td>
<td>14110</td>
<td>8,2</td>
<td>7,21</td>
</tr>
<tr>
<td>14/03/2013</td>
<td>16</td>
<td>8,28</td>
<td>14230</td>
<td>8,2</td>
<td>5,15</td>
</tr>
<tr>
<td>17/03/2013</td>
<td>16,9</td>
<td>8,43</td>
<td>14270</td>
<td>8,2</td>
<td>8,22</td>
</tr>
<tr>
<td>18/03/2013</td>
<td>17,0</td>
<td>8,42</td>
<td>14210</td>
<td>8,2</td>
<td>8,44</td>
</tr>
<tr>
<td>19/03/2013</td>
<td>17,0</td>
<td>8,33</td>
<td>14170</td>
<td>8,2</td>
<td>8,25</td>
</tr>
<tr>
<td>20/03/2013</td>
<td>19,5</td>
<td>8,62</td>
<td>14030</td>
<td>8,1</td>
<td>8,24</td>
</tr>
<tr>
<td>21/03/2013</td>
<td>17,9</td>
<td>8,62</td>
<td>14000</td>
<td>8,1</td>
<td>5,55</td>
</tr>
<tr>
<td>24/03/2013</td>
<td>19,5</td>
<td>8,01</td>
<td>13540</td>
<td>7,9</td>
<td>3,63</td>
</tr>
<tr>
<td>25/03/2013</td>
<td>19,8</td>
<td>8,02</td>
<td>13570</td>
<td>7,8</td>
<td>4,69</td>
</tr>
<tr>
<td>26/03/2013</td>
<td>19,5</td>
<td>8,01</td>
<td>13440</td>
<td>7,8</td>
<td>4,71</td>
</tr>
<tr>
<td>27/03/2013</td>
<td>19,8</td>
<td>7,94</td>
<td>13280</td>
<td>7,7</td>
<td>4,02</td>
</tr>
<tr>
<td>28/03/2013</td>
<td>19,5</td>
<td>8,02</td>
<td>13310</td>
<td>7,7</td>
<td>6,59</td>
</tr>
<tr>
<td>31/03/2013</td>
<td>20</td>
<td>7,89</td>
<td>13270</td>
<td>7,7</td>
<td>1,85</td>
</tr>
<tr>
<td>01/04/2013</td>
<td>21,9</td>
<td>7,90</td>
<td>13230</td>
<td>7,7</td>
<td>2,15</td>
</tr>
<tr>
<td>02/04/2013</td>
<td>20,8</td>
<td>7,85</td>
<td>13250</td>
<td>7,7</td>
<td>1,76</td>
</tr>
<tr>
<td>03/04/2013</td>
<td>20,6</td>
<td>7,98</td>
<td>13320</td>
<td>7,7</td>
<td>3,77</td>
</tr>
<tr>
<td>04/04/2013</td>
<td>21,0</td>
<td>7,92</td>
<td>13320</td>
<td>7,7</td>
<td>5,37</td>
</tr>
<tr>
<td>07/04/2013</td>
<td>17,6</td>
<td>8,11</td>
<td>13560</td>
<td>7,8</td>
<td>4,75</td>
</tr>
<tr>
<td>08/04/2013</td>
<td>18,5</td>
<td>8,04</td>
<td>13470</td>
<td>7,8</td>
<td>3,18</td>
</tr>
<tr>
<td>09/04/2013</td>
<td>19,0</td>
<td>7,94</td>
<td>13530</td>
<td>7,8</td>
<td>2,58</td>
</tr>
<tr>
<td>10/04/2013</td>
<td>20,4</td>
<td>7,92</td>
<td>13600</td>
<td>7,9</td>
<td>3,45</td>
</tr>
<tr>
<td>14/04/2013</td>
<td>21,8</td>
<td>8,11</td>
<td>13670</td>
<td>7,9</td>
<td>4,34</td>
</tr>
<tr>
<td>15/04/2013</td>
<td>20,3</td>
<td>8,25</td>
<td>13740</td>
<td>8,0</td>
<td>5,52</td>
</tr>
<tr>
<td>16/04/2013</td>
<td>20,1</td>
<td>8,10</td>
<td>13670</td>
<td>8,0</td>
<td>4,06</td>
</tr>
<tr>
<td>17/04/2013</td>
<td>20,5</td>
<td>8,12</td>
<td>13730</td>
<td>8,0</td>
<td>5,00</td>
</tr>
<tr>
<td>18/04/2013</td>
<td>21,2</td>
<td>8,31</td>
<td>13790</td>
<td>8,0</td>
<td>7,18</td>
</tr>
<tr>
<td>21/04/2013</td>
<td>23,6</td>
<td>8,30</td>
<td>13750</td>
<td>8,0</td>
<td>7,53</td>
</tr>
<tr>
<td>22/04/2013</td>
<td>21,7</td>
<td>8,26</td>
<td>13780</td>
<td>8,0</td>
<td>7,29</td>
</tr>
<tr>
<td>23/04/2013</td>
<td>19,8</td>
<td>8,42</td>
<td>13760</td>
<td>8,0</td>
<td>7,51</td>
</tr>
<tr>
<td>24/04/2013</td>
<td>18</td>
<td>8,49</td>
<td>13790</td>
<td>8,0</td>
<td>6,51</td>
</tr>
<tr>
<td>25/04/2013</td>
<td>20,2</td>
<td>8,60</td>
<td>13780</td>
<td>8,0</td>
<td>10,32</td>
</tr>
<tr>
<td>28/04/2013</td>
<td>22,4</td>
<td>8,52</td>
<td>14080</td>
<td>8,2</td>
<td>9</td>
</tr>
<tr>
<td>29/04/2013</td>
<td>22,1</td>
<td>8,54</td>
<td>14240</td>
<td>8,3</td>
<td>8,31</td>
</tr>
<tr>
<td>30/04/2013</td>
<td>22,3</td>
<td>8,58</td>
<td>14310</td>
<td>8,3</td>
<td>9,12</td>
</tr>
<tr>
<td>05/05/2013</td>
<td>23,5</td>
<td>8,63</td>
<td>14830</td>
<td>8,7</td>
<td>8,37</td>
</tr>
<tr>
<td>06/05/2013</td>
<td>23,8</td>
<td>8,71</td>
<td>14920</td>
<td>8,7</td>
<td>9,65</td>
</tr>
<tr>
<td>07/05/2013</td>
<td>25,8</td>
<td>8,75</td>
<td>14980</td>
<td>8,8</td>
<td>7,38</td>
</tr>
<tr>
<td>08/05/2013</td>
<td>24,9</td>
<td>8,63</td>
<td>15040</td>
<td>8,8</td>
<td></td>
</tr>
<tr>
<td>09/05/2013</td>
<td>24,3</td>
<td>8,62</td>
<td>14950</td>
<td>8,8</td>
<td></td>
</tr>
<tr>
<td>12/05/2013</td>
<td>25,2</td>
<td>8,66</td>
<td>14590</td>
<td>8,5</td>
<td>8,63</td>
</tr>
<tr>
<td>13/05/2013</td>
<td>24,8</td>
<td>8,8</td>
<td>14510</td>
<td>8,5</td>
<td>9,49</td>
</tr>
<tr>
<td>Moyenne</td>
<td>20,62</td>
<td>8,29</td>
<td>13927,73</td>
<td>8,09</td>
<td>5,99</td>
</tr>
</tbody>
</table>
Tableau N°14 : Résultats d’analyses DCO-DBO$_5$- MES des eaux traitées.

<table>
<thead>
<tr>
<th>Date</th>
<th>Paramètres</th>
<th>DCO</th>
<th>DBO$_5$</th>
<th>MES</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/03/2013</td>
<td></td>
<td>139,82</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>19/03/2013</td>
<td></td>
<td>118,44</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>26/03/2013</td>
<td></td>
<td>112,24</td>
<td>30</td>
<td>94</td>
</tr>
<tr>
<td>02/04/2013</td>
<td></td>
<td>84,65</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>16/04/2013</td>
<td></td>
<td>138,27</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>24/04/2013</td>
<td></td>
<td>130</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>29/04/2013</td>
<td></td>
<td>168,66</td>
<td>35</td>
<td>167</td>
</tr>
<tr>
<td>08/05/2013</td>
<td></td>
<td>171,55</td>
<td></td>
<td>162,4</td>
</tr>
<tr>
<td>Moyenne</td>
<td></td>
<td>132,95</td>
<td>27,43</td>
<td>90,23</td>
</tr>
</tbody>
</table>

Tableau N°15 : Résultats d’analyses NO$_3$- N$_2$- NH$_4$-NT et PT des eaux traitées.

<table>
<thead>
<tr>
<th>Date</th>
<th>Paramètres</th>
<th>N-NO3</th>
<th>N-N2</th>
<th>N-NH$_4$</th>
<th>NT</th>
<th>PT</th>
</tr>
</thead>
<tbody>
<tr>
<td>19/03/2013</td>
<td></td>
<td>3,22</td>
<td>0,418</td>
<td>26,26</td>
<td>56,8</td>
<td>3,22</td>
</tr>
<tr>
<td>24/04/2013</td>
<td></td>
<td>5,03</td>
<td></td>
<td>32,63</td>
<td>47,5</td>
<td>3,52</td>
</tr>
<tr>
<td>Moyenne</td>
<td></td>
<td>4,13</td>
<td>0,418</td>
<td>29,44</td>
<td>52,15</td>
<td>3,73</td>
</tr>
</tbody>
</table>

NT : Azote total

PT : Phosphore total
Annexes N°06 :

Tableau N°16: Les mesures biométriques des plantes.

<table>
<thead>
<tr>
<th>N° plante</th>
<th>10/03/2013</th>
<th>09/04/2013</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bloc 01 irrigué par les eaux de robinet</td>
<td>Bloc 02 irrigué par les eaux épurées</td>
</tr>
<tr>
<td></td>
<td>Acacia farnesiana</td>
<td>Albizia julibrissin</td>
</tr>
<tr>
<td></td>
<td>H (cm)</td>
<td>D (mm)</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>1,4</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>1,3</td>
</tr>
<tr>
<td>3</td>
<td>18,5</td>
<td>1,3</td>
</tr>
<tr>
<td>4</td>
<td>18,2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>25,7</td>
<td>1,9</td>
</tr>
<tr>
<td>6</td>
<td>18,7</td>
<td>1,3</td>
</tr>
<tr>
<td>7</td>
<td>32,2</td>
<td>1,9</td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td>1,3</td>
</tr>
<tr>
<td>9</td>
<td>10,8</td>
<td>1,3</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>1,4</td>
</tr>
<tr>
<td>11</td>
<td>25,2</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>18,4</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>16,2</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>1,9</td>
</tr>
<tr>
<td>15</td>
<td>28</td>
<td>1,2</td>
</tr>
<tr>
<td>16</td>
<td>27,6</td>
<td>1,4</td>
</tr>
<tr>
<td>17</td>
<td>27</td>
<td>1,3</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
<td>1,2</td>
</tr>
<tr>
<td>19</td>
<td>16,8</td>
<td>0,7</td>
</tr>
<tr>
<td>20</td>
<td>19,4</td>
<td>1,4</td>
</tr>
<tr>
<td>21</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
<td>1,5</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td>1,1</td>
</tr>
<tr>
<td>24</td>
<td>28,9</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Moyenne | **21,44** | **1,33** | **29,77** | **1,40** | **20,28** | **1,18** | **26,99** | **1,35** |

H : Hauteur
D : Diamètre
Tableau N° 17: Les mesures biométriques des plantes.

<table>
<thead>
<tr>
<th>N° plante</th>
<th>Acacia farnesiana</th>
<th>Albizia julibrissin</th>
<th>Acacia farnesiana</th>
<th>Albizia julibrissin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H (cm)</td>
<td>D (mm)</td>
<td>H (cm)</td>
<td>D (mm)</td>
</tr>
<tr>
<td>1</td>
<td>19,1</td>
<td>1,4</td>
<td>20,2</td>
<td>1,3</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>1,3</td>
<td>31,6</td>
<td>1,3</td>
</tr>
<tr>
<td>3</td>
<td>18,7</td>
<td>1,3</td>
<td>48,1</td>
<td>2,8</td>
</tr>
<tr>
<td>4</td>
<td>18,3</td>
<td>1,1</td>
<td>27,8</td>
<td>1,8</td>
</tr>
<tr>
<td>5</td>
<td>25,8</td>
<td>2</td>
<td>23,2</td>
<td>0,9</td>
</tr>
<tr>
<td>6</td>
<td>18,9</td>
<td>1,3</td>
<td>21,9</td>
<td>0,8</td>
</tr>
<tr>
<td>7</td>
<td>32,2</td>
<td>2</td>
<td>34,1</td>
<td>2,1</td>
</tr>
<tr>
<td>8</td>
<td>17,2</td>
<td>1,3</td>
<td>30</td>
<td>1,1</td>
</tr>
<tr>
<td>9</td>
<td>10,9</td>
<td>1,3</td>
<td>24</td>
<td>1,1</td>
</tr>
<tr>
<td>10</td>
<td>20,4</td>
<td>1,4</td>
<td>42,8</td>
<td>2,1</td>
</tr>
<tr>
<td>11</td>
<td>25,3</td>
<td>2</td>
<td>48</td>
<td>1,4</td>
</tr>
<tr>
<td>12</td>
<td>18,7</td>
<td>1,1</td>
<td>21,1</td>
<td>1,1</td>
</tr>
<tr>
<td>13</td>
<td>16,3</td>
<td>1,2</td>
<td>19,9</td>
<td>1,6</td>
</tr>
<tr>
<td>14</td>
<td>14,4</td>
<td>1,9</td>
<td>31,3</td>
<td>1,3</td>
</tr>
<tr>
<td>15</td>
<td>28,1</td>
<td>1,4</td>
<td>21,6</td>
<td>0,9</td>
</tr>
<tr>
<td>16</td>
<td>27,6</td>
<td>1,5</td>
<td>25</td>
<td>1,3</td>
</tr>
<tr>
<td>17</td>
<td>27,2</td>
<td>1,3</td>
<td>26,1</td>
<td>1,7</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
<td>1,2</td>
<td>23,4</td>
<td>1,2</td>
</tr>
<tr>
<td>19</td>
<td>16,8</td>
<td>0,8</td>
<td>31</td>
<td>1,9</td>
</tr>
<tr>
<td>20</td>
<td>19,5</td>
<td>1,5</td>
<td>33,2</td>
<td>1,2</td>
</tr>
<tr>
<td>21</td>
<td>18,3</td>
<td>1,1</td>
<td>46</td>
<td>1,7</td>
</tr>
<tr>
<td>22</td>
<td>28,1</td>
<td>1,5</td>
<td>45,1</td>
<td>1,6</td>
</tr>
<tr>
<td>23</td>
<td>17,1</td>
<td>1,1</td>
<td>23</td>
<td>1,4</td>
</tr>
<tr>
<td>24</td>
<td>29</td>
<td>1,3</td>
<td>31,4</td>
<td>1,4</td>
</tr>
<tr>
<td>Moyenne</td>
<td>21,50</td>
<td>1,39</td>
<td>30,41</td>
<td>1,46</td>
</tr>
</tbody>
</table>
Tableau N° 18: Les mesures biométriques des plantes

<table>
<thead>
<tr>
<th>N° plante</th>
<th>Acacia farnesiana</th>
<th>Albizia julibrissin</th>
<th>H (cm)</th>
<th>D (mm)</th>
<th>Acacia farnesiana</th>
<th>Albizia julibrissin</th>
<th>H (cm)</th>
<th>D (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19,3</td>
<td>1,5</td>
<td>20,3</td>
<td>1,4</td>
<td>20,9</td>
<td>1,1</td>
<td>33,2</td>
<td>1,8</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>1,3</td>
<td>31,7</td>
<td>1,4</td>
<td>27,5</td>
<td>1,3</td>
<td>32,5</td>
<td>1,6</td>
</tr>
<tr>
<td>3</td>
<td>18,8</td>
<td>1,3</td>
<td>48,2</td>
<td>2,8</td>
<td>21,2</td>
<td>1,1</td>
<td>13,7</td>
<td>1,5</td>
</tr>
<tr>
<td>4</td>
<td>18,4</td>
<td>1,2</td>
<td>27,9</td>
<td>1,9</td>
<td>13,5</td>
<td>0,9</td>
<td>28,2</td>
<td>1,5</td>
</tr>
<tr>
<td>5</td>
<td>25,9</td>
<td>2</td>
<td>23,3</td>
<td>1</td>
<td>17</td>
<td>1,3</td>
<td>20,9</td>
<td>0,9</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>1,4</td>
<td>21,9</td>
<td>0,9</td>
<td>23,3</td>
<td>1,4</td>
<td>18,7</td>
<td>1,5</td>
</tr>
<tr>
<td>7</td>
<td>32,4</td>
<td>2</td>
<td>34,2</td>
<td>2,2</td>
<td>20,5</td>
<td>1,2</td>
<td>30,1</td>
<td>1,5</td>
</tr>
<tr>
<td>8</td>
<td>17,3</td>
<td>1,4</td>
<td>30,2</td>
<td>1,2</td>
<td>21,1</td>
<td>1,2</td>
<td>28</td>
<td>1,6</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>1,3</td>
<td>24</td>
<td>1,1</td>
<td>19</td>
<td>1,5</td>
<td>34,5</td>
<td>1,3</td>
</tr>
<tr>
<td>10</td>
<td>20,7</td>
<td>1,5</td>
<td>43,1</td>
<td>2,5</td>
<td>25</td>
<td>1,3</td>
<td>24,3</td>
<td>1,1</td>
</tr>
<tr>
<td>11</td>
<td>25,3</td>
<td>2</td>
<td>48,2</td>
<td>1,5</td>
<td>13,2</td>
<td>1</td>
<td>26,2</td>
<td>1,4</td>
</tr>
<tr>
<td>12</td>
<td>18,9</td>
<td>1,3</td>
<td>21,2</td>
<td>1,1</td>
<td>21,1</td>
<td>1,1</td>
<td>30,7</td>
<td>1,9</td>
</tr>
<tr>
<td>13</td>
<td>16,4</td>
<td>1,3</td>
<td>20</td>
<td>1,7</td>
<td>17,7</td>
<td>1,4</td>
<td>22,2</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>14,5</td>
<td>2</td>
<td>31,5</td>
<td>1,3</td>
<td>20</td>
<td>1,5</td>
<td>21,3</td>
<td>2,4</td>
</tr>
<tr>
<td>15</td>
<td>28,3</td>
<td>1,5</td>
<td>21,7</td>
<td>0,9</td>
<td>21,4</td>
<td>1,4</td>
<td>36,4</td>
<td>1,3</td>
</tr>
<tr>
<td>16</td>
<td>27,7</td>
<td>1,7</td>
<td>25,1</td>
<td>1,3</td>
<td>20,5</td>
<td>1</td>
<td>24,3</td>
<td>1,1</td>
</tr>
<tr>
<td>17</td>
<td>27,3</td>
<td>1,4</td>
<td>26,6</td>
<td>1,9</td>
<td>29,4</td>
<td>2,3</td>
<td>37,5</td>
<td>1,7</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
<td>1,2</td>
<td>23,5</td>
<td>1,2</td>
<td>15</td>
<td>1,1</td>
<td>25,2</td>
<td>1,5</td>
</tr>
<tr>
<td>19</td>
<td>16,8</td>
<td>0,8</td>
<td>31,4</td>
<td>1,9</td>
<td>17,4</td>
<td>1,2</td>
<td>38,4</td>
<td>1,9</td>
</tr>
<tr>
<td>20</td>
<td>19,7</td>
<td>1,6</td>
<td>33,3</td>
<td>1,2</td>
<td>13,5</td>
<td>1,7</td>
<td>17,4</td>
<td>1,3</td>
</tr>
<tr>
<td>21</td>
<td>18,5</td>
<td>1,1</td>
<td>47,2</td>
<td>2</td>
<td>33,5</td>
<td>1,6</td>
<td>48</td>
<td>1,6</td>
</tr>
<tr>
<td>22</td>
<td>28,1</td>
<td>1,5</td>
<td>46,5</td>
<td>1,7</td>
<td>17,4</td>
<td>0,9</td>
<td>21,1</td>
<td>1,9</td>
</tr>
<tr>
<td>23</td>
<td>17,2</td>
<td>1,2</td>
<td>23,1</td>
<td>1,4</td>
<td>20,6</td>
<td>1,3</td>
<td>32,4</td>
<td>1,9</td>
</tr>
</tbody>
</table>
Tableau N° 19: Les mesures biométriques des plantes

<table>
<thead>
<tr>
<th>N° plante</th>
<th>Acacia farnesiana H (cm)</th>
<th>Acacia farnesiana D (mm)</th>
<th>Albizia julibrissin H (cm)</th>
<th>Albizia julibrissin D (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19,5</td>
<td>1,6</td>
<td>20,4</td>
<td>1,5</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>1,3</td>
<td>31,8</td>
<td>1,5</td>
</tr>
<tr>
<td>3</td>
<td>18,9</td>
<td>1,3</td>
<td>48,5</td>
<td>2,9</td>
</tr>
<tr>
<td>4</td>
<td>18,5</td>
<td>1,3</td>
<td>28,1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>2,1</td>
<td>23,4</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>19,2</td>
<td>1,5</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>32,5</td>
<td>2,1</td>
<td>34,3</td>
<td>2,3</td>
</tr>
<tr>
<td>8</td>
<td>17,4</td>
<td>1,5</td>
<td>30,5</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>11,1</td>
<td>1,3</td>
<td>24</td>
<td>1,1</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>1,6</td>
<td>43,5</td>
<td>2,5</td>
</tr>
<tr>
<td>11</td>
<td>25,4</td>
<td>2,1</td>
<td>48,7</td>
<td>1,6</td>
</tr>
<tr>
<td>12</td>
<td>19</td>
<td>1,4</td>
<td>21,3</td>
<td>1,2</td>
</tr>
<tr>
<td>13</td>
<td>16,5</td>
<td>1,3</td>
<td>20</td>
<td>1,7</td>
</tr>
<tr>
<td>14</td>
<td>14,5</td>
<td>2,1</td>
<td>31,8</td>
<td>1,4</td>
</tr>
<tr>
<td>15</td>
<td>28,4</td>
<td>1,5</td>
<td>21,8</td>
<td>0,9</td>
</tr>
<tr>
<td>16</td>
<td>27,8</td>
<td>1,9</td>
<td>25,2</td>
<td>1,4</td>
</tr>
<tr>
<td>17</td>
<td>27,5</td>
<td>1,5</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
<td>1,2</td>
<td>23,6</td>
<td>1,2</td>
</tr>
<tr>
<td>19</td>
<td>16,8</td>
<td>0,8</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>1,8</td>
<td>33,4</td>
<td>1,3</td>
</tr>
<tr>
<td>21</td>
<td>19,6</td>
<td>1,3</td>
<td>48</td>
<td>2,3</td>
</tr>
<tr>
<td>22</td>
<td>28,1</td>
<td>1,5</td>
<td>47,8</td>
<td>1,9</td>
</tr>
<tr>
<td>23</td>
<td>17,3</td>
<td>1,2</td>
<td>23,5</td>
<td>1,5</td>
</tr>
<tr>
<td>24</td>
<td>29,4</td>
<td>1,4</td>
<td>31,9</td>
<td>1,6</td>
</tr>
<tr>
<td>Moyenne</td>
<td>21,77</td>
<td>1,53</td>
<td>30,94</td>
<td>1,59</td>
</tr>
</tbody>
</table>

30/04/2013

<table>
<thead>
<tr>
<th>N° plante</th>
<th>Acacia farnesiana H (cm)</th>
<th>Acacia farnesiana D (mm)</th>
<th>Albizia julibrissin H (cm)</th>
<th>Albizia julibrissin D (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20,9</td>
<td>1,1</td>
<td>33,4</td>
<td>1,9</td>
</tr>
<tr>
<td>2</td>
<td>27,5</td>
<td>1,3</td>
<td>33</td>
<td>1,6</td>
</tr>
<tr>
<td>3</td>
<td>21,2</td>
<td>1,4</td>
<td>13,8</td>
<td>1,7</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>0,9</td>
<td>28,2</td>
<td>1,6</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>1,3</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>23,5</td>
<td>1,4</td>
<td>19</td>
<td>1,5</td>
</tr>
<tr>
<td>7</td>
<td>20,5</td>
<td>1,2</td>
<td>30,2</td>
<td>1,9</td>
</tr>
<tr>
<td>8</td>
<td>21,1</td>
<td>1,2</td>
<td>28,5</td>
<td>1,7</td>
</tr>
<tr>
<td>9</td>
<td>19,1</td>
<td>1,5</td>
<td>35</td>
<td>1,4</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>1,7</td>
<td>24,4</td>
<td>1,2</td>
</tr>
<tr>
<td>11</td>
<td>13,2</td>
<td>1</td>
<td>26,3</td>
<td>1,4</td>
</tr>
<tr>
<td>12</td>
<td>21,1</td>
<td>1,1</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>17,8</td>
<td>1,5</td>
<td>22,3</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>1,5</td>
<td>21,4</td>
<td>2,5</td>
</tr>
<tr>
<td>15</td>
<td>21,4</td>
<td>1,4</td>
<td>36,6</td>
<td>2,5</td>
</tr>
<tr>
<td>16</td>
<td>20,5</td>
<td>1</td>
<td>24,5</td>
<td>1,2</td>
</tr>
<tr>
<td>17</td>
<td>29,6</td>
<td>2,4</td>
<td>37,6</td>
<td>1,9</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>1,1</td>
<td>25,5</td>
<td>1,6</td>
</tr>
<tr>
<td>19</td>
<td>17,4</td>
<td>1,2</td>
<td>38,8</td>
<td>2,1</td>
</tr>
<tr>
<td>20</td>
<td>13,5</td>
<td>1,1</td>
<td>17,5</td>
<td>1,5</td>
</tr>
<tr>
<td>21</td>
<td>33,7</td>
<td>1,6</td>
<td>52</td>
<td>1,7</td>
</tr>
<tr>
<td>22</td>
<td>17,4</td>
<td>1</td>
<td>21,2</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>20,6</td>
<td>1,3</td>
<td>32,5</td>
<td>2,1</td>
</tr>
<tr>
<td>24</td>
<td>21,5</td>
<td>1,5</td>
<td>12</td>
<td>1,5</td>
</tr>
<tr>
<td>Moyenne</td>
<td>20,48</td>
<td>1,32</td>
<td>27,74</td>
<td>1,69</td>
</tr>
</tbody>
</table>
Tableau N° 20 : Les mesures biométriques des plantes

<table>
<thead>
<tr>
<th>N°plante</th>
<th>Acacia farnesiana</th>
<th>Albizia julibrissin</th>
<th>Acacia farnesiana</th>
<th>Albizia julibrissin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H (cm)</td>
<td>D (mm)</td>
<td>H (cm)</td>
<td>D (mm)</td>
</tr>
<tr>
<td>1</td>
<td>19,7</td>
<td>1,6</td>
<td>20,5</td>
<td>1,6</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>1,3</td>
<td>31,8</td>
<td>1,7</td>
</tr>
<tr>
<td>3</td>
<td>19,5</td>
<td>1,4</td>
<td>49</td>
<td>3,1</td>
</tr>
<tr>
<td>4</td>
<td>19,5</td>
<td>1,3</td>
<td>28,4</td>
<td>2,1</td>
</tr>
<tr>
<td>5</td>
<td>26,1</td>
<td>2,1</td>
<td>23,5</td>
<td>1,1</td>
</tr>
<tr>
<td>6</td>
<td>20,1</td>
<td>1,6</td>
<td>23</td>
<td>1,1</td>
</tr>
<tr>
<td>7</td>
<td>33</td>
<td>2,1</td>
<td>34,5</td>
<td>2,4</td>
</tr>
<tr>
<td>8</td>
<td>17,5</td>
<td>1,6</td>
<td>30,9</td>
<td>1,1</td>
</tr>
<tr>
<td>9</td>
<td>11,5</td>
<td>1,5</td>
<td>24,1</td>
<td>1,2</td>
</tr>
<tr>
<td>10</td>
<td>21,5</td>
<td>1,6</td>
<td>44</td>
<td>2,6</td>
</tr>
<tr>
<td>11</td>
<td>25,5</td>
<td>2,2</td>
<td>40,9</td>
<td>1,8</td>
</tr>
<tr>
<td>12</td>
<td>19,1</td>
<td>1,5</td>
<td>21,6</td>
<td>1,4</td>
</tr>
<tr>
<td>13</td>
<td>16,8</td>
<td>1,4</td>
<td>21,5</td>
<td>1,7</td>
</tr>
<tr>
<td>14</td>
<td>15,5</td>
<td>2,1</td>
<td>32</td>
<td>1,5</td>
</tr>
<tr>
<td>15</td>
<td>28,5</td>
<td>1,6</td>
<td>22,5</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>27,9</td>
<td>2</td>
<td>25,3</td>
<td>1,6</td>
</tr>
<tr>
<td>17</td>
<td>27,5</td>
<td>1,5</td>
<td>27,5</td>
<td>2,2</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
<td>1,2</td>
<td>23,7</td>
<td>1,5</td>
</tr>
<tr>
<td>19</td>
<td>16,8</td>
<td>0,8</td>
<td>32,4</td>
<td>2,1</td>
</tr>
<tr>
<td>20</td>
<td>20,5</td>
<td>1,9</td>
<td>33,5</td>
<td>1,6</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>1,4</td>
<td>49,2</td>
<td>2,5</td>
</tr>
<tr>
<td>22</td>
<td>28,1</td>
<td>1,5</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>17,4</td>
<td>1,3</td>
<td>24</td>
<td>1,7</td>
</tr>
<tr>
<td>24</td>
<td>29,5</td>
<td>1,5</td>
<td>32</td>
<td>1,8</td>
</tr>
<tr>
<td>Moyenne</td>
<td>22,04</td>
<td>1,58</td>
<td>31,08</td>
<td>1,77</td>
</tr>
</tbody>
</table>

07/05/2013

<table>
<thead>
<tr>
<th>N°plante</th>
<th>Acacia farnesiana</th>
<th>Albizia julibrissin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H (cm)</td>
<td>D (mm)</td>
</tr>
<tr>
<td>1</td>
<td>20,9</td>
<td>1,1</td>
</tr>
<tr>
<td>2</td>
<td>27,5</td>
<td>1,3</td>
</tr>
<tr>
<td>3</td>
<td>21,2</td>
<td>1,4</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>0,9</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>1,3</td>
</tr>
<tr>
<td>6</td>
<td>23,6</td>
<td>1,4</td>
</tr>
<tr>
<td>7</td>
<td>20,5</td>
<td>1,2</td>
</tr>
<tr>
<td>8</td>
<td>21,1</td>
<td>1,2</td>
</tr>
<tr>
<td>9</td>
<td>19,2</td>
<td>1,6</td>
</tr>
<tr>
<td>10</td>
<td>25</td>
<td>1,7</td>
</tr>
<tr>
<td>11</td>
<td>13,2</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>21,1</td>
<td>1,1</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>1,5</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>1,5</td>
</tr>
<tr>
<td>15</td>
<td>21,4</td>
<td>1,4</td>
</tr>
<tr>
<td>16</td>
<td>20,5</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>29,8</td>
<td>2,5</td>
</tr>
<tr>
<td>18</td>
<td>15</td>
<td>1,1</td>
</tr>
<tr>
<td>19</td>
<td>17,4</td>
<td>1,2</td>
</tr>
<tr>
<td>20</td>
<td>13,5</td>
<td>1,1</td>
</tr>
<tr>
<td>21</td>
<td>34</td>
<td>1,7</td>
</tr>
<tr>
<td>22</td>
<td>17,5</td>
<td>1,1</td>
</tr>
<tr>
<td>23</td>
<td>20,6</td>
<td>1,3</td>
</tr>
<tr>
<td>24</td>
<td>21,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Moyenne</td>
<td>20,52</td>
<td>1,34</td>
</tr>
</tbody>
</table>
Tableau N° 21: Les mesures biométriques des plantes.

<table>
<thead>
<tr>
<th>N° plante</th>
<th>14/05/2013</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bloc 01 irrigué par les eaux de robinet</td>
<td>Acacia farnesiana</td>
<td>Albizia julibrissin</td>
<td>Bloc 02 irrigué par les eaux épurées</td>
<td>Acacia farnesiana</td>
<td>Albizia julibrissin</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H (cm)</td>
<td>D (mm)</td>
<td>H (cm)</td>
<td>D (mm)</td>
<td>H (cm)</td>
<td>D (mm)</td>
<td>H (cm)</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>1,7</td>
<td>21</td>
<td>1,6</td>
<td>20,9</td>
<td>1,1</td>
<td>33,6</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>1,3</td>
<td>32</td>
<td>1,8</td>
<td>27,5</td>
<td>1,3</td>
<td>33,2</td>
</tr>
<tr>
<td>3</td>
<td>19,2</td>
<td>1,5</td>
<td>50</td>
<td>3,2</td>
<td>21,2</td>
<td>1,4</td>
<td>14,2</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>1,4</td>
<td>28,4</td>
<td>2,1</td>
<td>13</td>
<td>0,9</td>
<td>28,5</td>
</tr>
<tr>
<td>5</td>
<td>26,1</td>
<td>2,2</td>
<td>24</td>
<td>1,2</td>
<td>17</td>
<td>1,3</td>
<td>21,3</td>
</tr>
<tr>
<td>6</td>
<td>20,6</td>
<td>1,7</td>
<td>23</td>
<td>1,2</td>
<td>23,7</td>
<td>1,4</td>
<td>21,6</td>
</tr>
<tr>
<td>7</td>
<td>33,5</td>
<td>2,1</td>
<td>35</td>
<td>2,4</td>
<td>20,5</td>
<td>1,2</td>
<td>30,6</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>1,7</td>
<td>31,1</td>
<td>1,2</td>
<td>21,1</td>
<td>1,2</td>
<td>31,1</td>
</tr>
<tr>
<td>9</td>
<td>11,5</td>
<td>1,6</td>
<td>24,2</td>
<td>1,3</td>
<td>19,3</td>
<td>1,7</td>
<td>35,5</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>1,6</td>
<td>44,1</td>
<td>2,7</td>
<td>25</td>
<td>1,7</td>
<td>25,1</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
<td>2,2</td>
<td>41</td>
<td>1,9</td>
<td>13,2</td>
<td>1</td>
<td>26,5</td>
</tr>
<tr>
<td>12</td>
<td>20,1</td>
<td>1,6</td>
<td>22</td>
<td>1,5</td>
<td>21,1</td>
<td>1,1</td>
<td>35,5</td>
</tr>
<tr>
<td>13</td>
<td>17</td>
<td>1,5</td>
<td>23</td>
<td>2</td>
<td>18,1</td>
<td>1,6</td>
<td>22,6</td>
</tr>
<tr>
<td>14</td>
<td>15,7</td>
<td>2,2</td>
<td>32,3</td>
<td>1,6</td>
<td>20</td>
<td>1,5</td>
<td>22</td>
</tr>
<tr>
<td>15</td>
<td>28,6</td>
<td>1,7</td>
<td>23</td>
<td>1</td>
<td>21,4</td>
<td>1,4</td>
<td>37</td>
</tr>
<tr>
<td>16</td>
<td>27,9</td>
<td>2</td>
<td>25,5</td>
<td>1,6</td>
<td>20,5</td>
<td>1</td>
<td>24,6</td>
</tr>
<tr>
<td>17</td>
<td>27,9</td>
<td>2</td>
<td>28,1</td>
<td>2,6</td>
<td>30</td>
<td>2,6</td>
<td>37,9</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
<td>1,2</td>
<td>24</td>
<td>1,6</td>
<td>15</td>
<td>1,1</td>
<td>27,5</td>
</tr>
<tr>
<td>19</td>
<td>16,8</td>
<td>0,8</td>
<td>33</td>
<td>2,2</td>
<td>17,4</td>
<td>1,2</td>
<td>39,1</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>1,9</td>
<td>34</td>
<td>1,7</td>
<td>15,5</td>
<td>1,1</td>
<td>18,2</td>
</tr>
<tr>
<td>21</td>
<td>20</td>
<td>1,4</td>
<td>51,5</td>
<td>2,7</td>
<td>34,1</td>
<td>1,7</td>
<td>57,4</td>
</tr>
<tr>
<td>22</td>
<td>28,1</td>
<td>1,5</td>
<td>52</td>
<td>2,4</td>
<td>17,6</td>
<td>1,2</td>
<td>22,1</td>
</tr>
<tr>
<td>23</td>
<td>17,5</td>
<td>1,3</td>
<td>25</td>
<td>2,1</td>
<td>20,6</td>
<td>1,3</td>
<td>34</td>
</tr>
<tr>
<td>24</td>
<td>29,5</td>
<td>1,6</td>
<td>32,5</td>
<td>1,8</td>
<td>21,5</td>
<td>1,5</td>
<td>13</td>
</tr>
<tr>
<td>Moyenne</td>
<td>22,33</td>
<td>1,65</td>
<td>31,65</td>
<td>1,89</td>
<td>20,55</td>
<td>1,35</td>
<td>28,84</td>
</tr>
</tbody>
</table>
Références bibliographiques

BENNOUNA M. KEHAL S., 2001. Production de Méthane à Partir des Boues des Stations

Références électroniques

Étude préliminaire de la réutilisation des eaux épurées par la station de lagunage aéré de Ouargla pour l’arrosage d’espèces forestières

Résumé :

L’objectif de notre travail est d’évaluer les possibilités d’utilisation des eaux usées traitées de la station d’épuration de Ouargla pour l’irrigation des essences forestières, en prenant pour témoins les eaux de robinet. Le matériel végétal est composé de deux espèces connues à croissance rapide. Il s’agit d’Acacia farnesiana et d’Albizia julibrissin. Ce travail a duré deux mois dans des conditions identiques.

Pour Albizia julibrissin, l’utilisation des eaux épurées met globalement en évidence une croissance en hauteur de 26,99 cm à 28,84 cm et en diamètre de 1,35 mm à 1,84 mm du même ordre de grandeur que celle obtenue avec l’utilisation des eaux de forage. Cette croissance est moins importante pour Acacia farnesiana qu’il faut suivre sur une durée plus longue.

Mots clés: réutilisation, eaux usées traitées, eaux de robinet, Ouargla, l’irrigation, Albizia julibrissin, Acacia farnesiana, croissance.

دراسة أولية لإعادة استعمال مياه الصرف الصحي المعالجة لمحطة أحواض النهوض بورقة لري أشجار الغابات

ملخص:

عملنا يهدف إلى تقييم إمكانية استخدام مياه الصرف الصحي المعالجة لمحطة التشفير بورقة لري أشجار الغابات، مع أخذ Acacia farnesiana كشاهد. تتكون هذه الدراسة من ربيعين سريعي النمو، وهم Albizia julibrissin. تم استخدام هذا العمل لقياس النمو وفقًا للمناخ العام في Ouargla. بالنسبة لـ Albizia julibrissin التي تم استخدامها كما هو الحال مع المياه المعالجة، فإن النمو أقل أهمية بالنسبة ل Acacia farnesiana.

الكلمات المفتاحية: إعادة استعمال، مياه الصرف الصحي المعالجة، أشجار الحلفية، ورقة، سقي، النمو، Acacia farnesiana

Preliminary study of the reuse of waters purified by the station of impoundment aerated from Ouargla for irrigation of forest species

Abstract :

The objective of our work is to estimate the possibilities of using the waste water treated at the water treatment station of Ouargla for irrigation forest’s trees, by taking the water of faucet as a witness.

The plant material consists of two species known with fast growth. This work lasted two months in similar conditions.

For Albizia julibrissin Generally, use of purified water results a growth in length from 26,99 cm at 28,84 cm and diameter from 1,35 mm at 1,84 mm in the same level as that obtained with the use of water of faucet. This growth is less important for Acacia farnesiana which it is necessary to follow on a longer duration.

Key words: waste water treated, witnesses waters, Ouargla, irrigation, Albizia julibrissin, Acacia farnesiana, a growth.