A Similar Nonlinear Telegraph Problem
Governed By Lamé System

MEFLAH Mabrouk

Université Kasdi Merbah, Ouargla, Algérie
Laboratoire des Mathématiques Appliquées
Faculté des Sciences et de la technologie et
Des Sciences de la matière Ouargla 30.000 Algérie
mabrouk.meflah@univ-ouargla.dz

Abstract. Introducing the Lamé operator in the telegraph equation, we obtain theoretically a similar nonlinear system. In this work we are interested in the existence and uniqueness of function \(u = u(x,t), x \in \Omega, t \in (0,T)\) solution for the new system by the elliptic regularization method.

Keywords: Lamé system, Elliptic regularization, Monotone operators.

1 Notations and position of the problem

Let \(\Omega\) an open bounded domain of \(\mathbb{R}^n\), with regular boundary \(\Gamma\). We denote by \(Q\) the cylinder \(\mathbb{R}^n_x \times \mathbb{R}_t; Q = \Omega \times [0,T]\), with boundary \(\Sigma\). L designed Lamé system define by \(\mu \Delta + (\lambda + \mu) \nabla \text{div}, \lambda \) and \(\mu\) are constants Lamé with \(\lambda + \mu \geq 0\) and \(h,f\) are functions. We look for the existence and uniqueness of a function \(u = u(x,t), x \in \Omega, t \in [0,T]\), solution of the problem (P)

\[
\begin{cases}
 u'' + u' + u - Lu + |u'|^{p-2}u' = f & \text{in } Q \\
 u = 0 & \text{on } \Sigma \\
 u(x,0) = u(x,T) & \forall x \in \Omega \\
 u'(x,0) = u'(x,T) & \forall x \in \Omega
\end{cases}
\]

2 Existence of the solution

Theorem 1. Assume that \(\Omega\) is bounded open of \(\mathbb{R}^n\) are given \(f\), with \(f \in L(Q)\). Then there exists a function \(u = w_0 + w\) satisfying (P)

\[
\begin{align*}
 w_0 & \in H_0^1(\Omega) + W^{2,q}(\Omega) \cap W_0^{1,2}(\Omega) \\
 w & \in L^2(0,T; H_0^1(\Omega)) \\
 w' & \in L^p(Q)
\end{align*}
\]
Proof we use an approach due to G. Prodi [11] we have:

\[
\begin{align*}
\begin{cases}
 u = w_0 + w \\
 w_0 \text{ independent of } t
\end{cases}
\end{align*}
\]

(1.5)

We introduce the Prodi idea (1. 5) in (1.1.1) we having

\[
\begin{align*}
u'' + u' + u - Lu + |u'|^{p-2}u' - f &= f + \\
Lu_0
\end{align*}
\]

(1.6)

We consider the derivative of (1.6) we obtain

\[
\frac{d}{dt} \left(u'' + u' + u - Lu + |u'|^{p-2}u' \right) = \frac{df}{dt}
\]

(1.7)

And

\[
\begin{align*}
\int_0^T u dt &= 0 \\
u(T) &= u(0) \\
u'(x, 0) &= u'(x, T)
\end{align*}
\]

(1.8)

We deduce to (1.7)

\[
u'' - Lu + |u'|^{p-2}u' - f = h_0 \quad \text{with } h_0 \text{ independent of } t
\]

(1.9)

For resolve (1.7) and (1.8) we denotes. \(L = -\lambda; \beta(u') = |u'|^{p-2}u' \)

And we define the functional space \(V \):

\[
V = \left\{ v \in L^2(0,T;H_0^1(\Omega)); \quad v \in L^2(0,T,(H_\lambda^1(\Omega)) \cap L^p(Q); \\
\int_0^T v(t)dt = 0; \quad v(T) = v(0); \quad v'(T) = v'(0)
\right\}
\]

(1.10)

The Banach structure of \(V \) is defined by

\[
\|v\|_V = \|v\|_{L^2(0,T;H_0^1(\Omega))} + \|v'\|_{L^2(0,T,H_\lambda^1(\Omega))} + \|v\|_{L^p(Q)} + \|v\|_{L^2(0,T,L^2(\Omega))}
\]

We define the bilinear form:

\[
b(u, v) = \int_0^T \left((u'', v') + (Au, v) + (\beta(u'), v) \right) dt
\]

(1.11)

The weak formulation of (1.7) and (1.8) is to find \(u \in V \) such that

\[
b(u, v) = \int_0^T (f, v')dt \quad \forall \ v \in V
\]

(1.12)

But (1.12) not coercive.

Then we following some ideas of Lions for obtain the elliptic regularization, given \(\delta > 0 \) and \(u, v \in V \), we define

\[
\pi_\delta(u, v) = \delta \int_0^T [(u'', v') + (Au, v')] ds + \int_0^T (u'' + Au + \beta(u'), v') ds.
\]

(1.13)

The application \(v \rightarrow \pi_\delta(u, v) \) is continuous on \(V \) so there exists an application

\[
B_\delta \in \mathcal{V}: \pi_\delta(u, v) = (B_\delta(u), v)
\]

(1.14)

The linear operator \(B_\delta : V \rightarrow V \) satisfies the four properties:

\(B_\delta \) is bounded in \(V \) for all bounded set in \(V \) and is a hemi continuous and is a strictly monotone and is coercive.
In view of these properties and as consequence of theorem of Lions [4], there exist unique a function $u_\delta \in V$:

$$\pi_\delta(u_\delta, v) = \int_0^T (f, v') dt \quad \forall v \in V$$ \hspace{1cm} (1.15)

2.1 A priori estimates I

Explicitly the elliptic regularization (1.15) and setting $v = u_\delta$, we obtain:

$$\delta \int_0^T [\|u''_\delta\|^2 + \|u'_\delta\|^2] dt + \int_0^T [(u'_\delta)^2 + (\beta(u'_\delta), u'_\delta)] dt = \int_0^T (f, u_\delta) dt$$ \hspace{1cm} (1.16)

Or

$$\int_0^T (\beta(u'), u') dt = \|u'\|_{L^p(\Omega)}^p \quad \text{And} \quad \int_0^T v dt = 0 \Rightarrow \|u\|_{L^2(0,T; H^1(\Omega))} \leq C \|u'\|_{L^2(0,T; H^1(\Omega))}$$

Then

u'_δ is bounded in $L^p(\Omega)$ when $\delta \to 0$ \hspace{1cm} (1.17)

$$\delta \int_0^T [\|u''_\delta\|^2 + \|u'_\delta\|^2 + \|u'_\delta\|^2] dt \leq C$$ \hspace{1cm} (1.18)

Or

$$\int_0^T u_\delta dt = 0.$$ \hspace{1cm} (1.19)

And

$$\delta \int_0^T \|u_\delta\|^2 dt \leq C$$ \hspace{1cm} (1.20)

2.2 A priori estimates II

Exchange in (1.15) v with:

$$v(t) = \int_0^t u_\delta(s) ds - \frac{1}{T} \int_0^T (T-s)u_\delta(s) ds$$ \hspace{1cm} (1.21)

We verify that:

$$\begin{cases}
\int_0^T v dt = 0 & \forall v \in V \\
0 & v' = u_\delta
\end{cases}$$ \hspace{1cm} (1.22)

Taking into account (1.21) in (1.15) we get

$$\delta \int_0^T [(u''_\delta, u'_\delta) + (u'_\delta, u_\delta) + (Au'_\delta, u_\delta)] dt + \int_0^T [(u''_\delta, u_\delta) + (u'_\delta, u_\delta)] dt$$
By using periodicity of \(u_\delta, u'_\delta \in V \), we obtain:

\[
\int_0^T (u''_\delta, u'_\delta) dt = \int_0^T (Au'_\delta, u_\delta) dt = 0
\] \hspace{1cm} (1.24)

And

\[
\int_0^T (u''_\delta, u_\delta) dt = (u'_\delta(T), u_\delta(T)) - (u'_\delta(0), u_\delta(0)) - \int_0^T (u'_\delta, u'_\delta) dt
\]

\[
= -\int_0^T |u'_\delta|^2 dt
\] \hspace{1cm} (1.25)

By (1.24) and (1.17) we have

\[
\left| \int_0^T (u''_\delta, u_\delta) dt \right| \leq C \quad \text{when } \delta \to 0
\] \hspace{1cm} (1.26)

Also, from (1.17) and (1.19) we obtain:

\[
\left| \int_0^T \beta(u'_\delta), u_\delta) dt \right| \leq \|\beta(u'_\delta)\|_{L^p(Q)} \|u_\delta\|_{L^p(Q)} \leq C'
\] \hspace{1cm} (1.27)

Combining (1.24), (1.26), (1.27) with (1.23) we deduce

\[
\int_0^T \|u_\delta\|^2 dt \leq C
\] \hspace{1cm} (1.28)

2.3 Passage to the limit

From (1.17) and (1.28) that there exists a subsequence from \((u_\delta)\), such that

\[
u_\delta \to 0 \quad \text{weak in } L^2(0, T; H_0^1(\Omega))
\] \hspace{1cm} (1.29)

\[
u'_\delta \to \nu' \quad \text{weak in } L^p(Q)
\] \hspace{1cm} (1.30)

\[
\beta(u'_\delta) \to \chi \quad \text{weak in } L^q(Q)
\] \hspace{1cm} (1.31)

Passage to the limit in (1.15) we obtain

\[
\int_0^T [(-u', v') + (Au, v') + (\chi, v')] dt = \int_0^T (f, v') dt \quad \forall v \in V
\] \hspace{1cm} (1.32)

Use the convolution technical in (1.32) we have
When

\[\int_0^T (\chi, u'') dt = \int_0^T (f, u') dt \quad \forall v \in V \quad (1.34) \]

3 Uniqueness of solution:

Theorem

Under the hypotheses of the theorem of existence, we consider two solutions \(u_1 \) and \(u_2 \) of the problem (P) then \(u_1 = u_2 \).

Proof: We subtract the equations (1.9) corresponding to \(u_1 \) and \(u_2 \) and sitting

\[\phi'' + A\phi + \beta(u_1) - \beta(u_2) \]

Denoting by \((\eta_\delta)\) the regularizing sequence a similar argument by Brézis [2] we obtain

\[\phi' \ast \eta_\delta = \phi' \ast \eta_\delta = [\phi' \ast \eta_\delta] \quad (2.2) \]

Hence, by using (1.2) and (1.3), we have

\[\phi = \varphi + \phi_0 : \phi_0 \in V \text{ and } \varphi \in L^2(0,T,H_0^1(\Omega)) \quad (2.3) \]

From (2.2) we get

\[\phi' \ast \eta_\delta = \phi' \ast \eta_\delta = \psi' \ast \eta_\delta \quad (2.4) \]

Show that

\[\int_0^T (\psi', \phi' \ast \eta_\delta) dt = 0 \]

When

\[\int_0^T \frac{d}{dt} (\phi', \phi' \ast \eta_\delta) dt \]

\[= \int_0^T (\psi', \phi' \ast \eta_\delta) dt + \int_0^T (\phi'', \phi' \ast \eta_\delta) dt = 0 \quad (2.5) \]

Therefore

\[\int_0^T (\phi'', \phi' \ast \eta_\delta) dt = \frac{1}{2} \int_0^T \frac{d}{dt} (\phi', \phi' \ast \eta_\delta) dt = 0 \quad (2.6) \]

\(\phi \) and \(\eta_\delta \) periodic then we have

\[\int_0^T (\phi, \phi' \ast \eta_\delta) dt = \int_0^T (\psi', \phi' \ast \eta_\delta) dt = \int_0^T (A\phi, \phi' \ast \eta_\delta) dt \quad (2.7) \]

From (2.1); (2.6) and (2.7) we obtain:
Passage to the limit in (2.8) we have
\[\int_{0}^{T} \left(\beta(u'_1) - \beta(u'_2), \phi' \right)_{\eta_{\theta}} = 0 \] (2.8)
Where
\[u'_1 - u'_2 = 0 \Rightarrow u'_1 = u'_2 \] (2.10)
This implies that
\[\phi = u_1 - u_2 = 0, \theta \text{ independent of } t \] (2.11)
\[\text{From (2.7) and (2.11) we obtain} \]
\[\int_{0}^{T} (A\theta, \theta)_{\mathcal{D}} = 0 \quad \forall \theta \in \mathcal{D} \] (2.12)
We deduce from (1.2)
\[\theta \in H_0^1(\Omega) + W^{2,q}(\Omega) \cap W_0^{1,q}(\Omega) \] (2.13)
By (2.12) and (2.13) and using theorem of Green we have \((A\theta, \theta) = 0 \Rightarrow \theta = 0 \)
Where the uniqueness of solution.

References